{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T00:14:02Z","timestamp":1742948042764,"version":"3.40.3"},"publisher-location":"Cham","reference-count":21,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319961354"},{"type":"electronic","value":"9783319961361"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-319-96136-1_14","type":"book-chapter","created":{"date-parts":[[2018,7,7]],"date-time":"2018-07-07T12:27:46Z","timestamp":1530966466000},"page":"159-173","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Document Clustering Using Local and Universal Knowledge"],"prefix":"10.1007","author":[{"given":"Kazem","family":"Qazanfari","sequence":"first","affiliation":[]},{"given":"Abdou","family":"Youssef","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,7,8]]},"reference":[{"doi-asserted-by":"publisher","unstructured":"Berkhin, P.: A survey of clustering data mining techniques. Group. Multidimens. Data 25\u201371 (2006). https:\/\/doi.org\/10.1007\/3-540-28349-8_2","key":"14_CR1","DOI":"10.1007\/3-540-28349-8_2"},{"key":"14_CR2","first-page":"487","volume":"8","author":"PN Tan","year":"2006","unstructured":"Tan, P.N., Michael, S., Vipin, K.: Data mining cluster analysis: basic concepts and algorithms. Introd. Data Min. 8, 487\u2013568 (2006)","journal-title":"Introd. Data Min."},{"doi-asserted-by":"crossref","unstructured":"Qazanfari, K., Youssef, A.: Contextual feature weighting using knowledge beyond the repository knowledge. Int. J. Comput. Commun. Eng. (IJCCE) (2018)","key":"14_CR3","DOI":"10.17706\/IJCCE.2018.7.3.45-57"},{"key":"14_CR4","first-page":"1","volume":"261","author":"K Qazanfari","year":"2017","unstructured":"Qazanfari, K., Youssef, A., Keane, K., Nelson, J.: A novel recommendation system to match college events and groups to students. AIAAT 261, 1\u201315 (2017)","journal-title":"AIAAT"},{"issue":"1","key":"14_CR5","first-page":"14","volume":"1","author":"SKA Fahad","year":"2017","unstructured":"Fahad, S.K.A., Wael, M.S.Y.: Review on semantic document clustering. Int. J. Contemp. Comput. Res. 1(1), 14\u201330 (2017)","journal-title":"Int. J. Contemp. Comput. Res."},{"doi-asserted-by":"publisher","unstructured":"Singh, J.P., Nizar, B.: Proportional data clustering using K-means algorithm: a comparison of different distances. In: 2017 IEEE International Conference on Industrial Technology (ICIT), pp. 1048\u20131052. IEEE (2017). https:\/\/doi.org\/10.1109\/icit.2017.7915506","key":"14_CR6","DOI":"10.1109\/icit.2017.7915506"},{"key":"14_CR7","first-page":"768","volume":"21","author":"EC Forgy","year":"1965","unstructured":"Forgy, E.C.: Analysis of multivariate data: efficiency versus interpretability of classification. Biometrics 21, 768\u2013780 (1965)","journal-title":"Biometrics"},{"key":"14_CR8","volume-title":"Finding Groups in Data. An Introduction to Cluster Analysis","author":"L Kaufman","year":"2009","unstructured":"Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. An Introduction to Cluster Analysis, vol. 344. Wiley, Hoboken (2009)"},{"unstructured":"Strehl, A., Ghosh, J., Mooney, R.: Impact of similarity measures on web-page clustering. In: Workshop on Artificial Intelligence for Web Search (AAAI 2000), pp. 58\u201364 (2000)","key":"14_CR9"},{"doi-asserted-by":"publisher","unstructured":"Chim, H., Deng, X.: A new suffix tree similarity measure for document clustering. In: 16th International Conference on World Wide Web, pp. 121\u2013130. ACM (2007). https:\/\/doi.org\/10.1145\/1242572.1242590","key":"14_CR10","DOI":"10.1145\/1242572.1242590"},{"key":"14_CR11","doi-asserted-by":"publisher","first-page":"54","DOI":"10.2307\/2346439","volume":"18","author":"JC Gower","year":"1969","unstructured":"Gower, J.C., Roos, G.J.S.: Minimum spanning trees and single linkage cluster analysis. J. R. Stat. Soc. Ser. C (Appl. Stat.) 18, 54\u201364 (1969). https:\/\/doi.org\/10.2307\/2346439","journal-title":"J. R. Stat. Soc. Ser. C (Appl. Stat.)"},{"key":"14_CR12","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1007\/BF00114265","volume":"2","author":"DH Fisher","year":"1987","unstructured":"Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Mach. Learn. 2, 139\u2013172 (1987). https:\/\/doi.org\/10.1007\/BF00114265","journal-title":"Mach. Learn."},{"key":"14_CR13","doi-asserted-by":"publisher","first-page":"86","DOI":"10.1080\/01621459.1967.10482890","volume":"62","author":"B King","year":"1967","unstructured":"King, B.: Step-wise clustering procedures. J. Am. Stat. Assoc. 62, 86\u2013101 (1967)","journal-title":"J. Am. Stat. Assoc."},{"doi-asserted-by":"publisher","unstructured":"Liu, X., Gong, Y., Xu, W., Zu, S.: Document clustering with cluster refinement and model selection capabilities. In: 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 191\u2013198 (2002). https:\/\/doi.org\/10.1145\/564376.564411","key":"14_CR14","DOI":"10.1145\/564376.564411"},{"key":"14_CR15","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1016\/j.neunet.2016.12.008","volume":"88","author":"J Xu","year":"2017","unstructured":"Xu, J., Xu, B., Wang, P., Zheng, S., Tian, G., Zhao, J.: Self-taught convolutional neural networks for short text clustering. Neural Netw. 88, 22\u201331 (2017). https:\/\/doi.org\/10.1016\/j.neunet.2016.12.008","journal-title":"Neural Netw."},{"unstructured":"Gallant, S.I.: Method for document retrieval and for word sense disambiguation using neural networks U.S. Patent No. 5,317,507. 31 (1994)","key":"14_CR16"},{"unstructured":"Piotr, B., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606 (2016)","key":"14_CR17"},{"unstructured":"Lewis, D.D.: Reuters-21578, Distribution 1.0 (1987)","key":"14_CR18"},{"unstructured":"Joachims, T.: A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization, Computer Science Technical Report CMU-CS-96\u2013118. Carnegie Mellon University (1996)","key":"14_CR19"},{"unstructured":"Jey, H.L., Timothy, B.: An empirical evaluation of doc2vec with practical insights into document embedding generation. arXiv preprint arXiv:1607.05368 (2016)","key":"14_CR20"},{"unstructured":"Rosenberg, A., Julia, H.: V-measure: a conditional entropy-based external cluster evaluation measure. In: EMNLP-CoNLL (2007)","key":"14_CR21"}],"container-title":["Lecture Notes in Computer Science","Machine Learning and Data Mining in Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-96136-1_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T17:32:27Z","timestamp":1709832747000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-96136-1_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783319961354","9783319961361"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-96136-1_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"8 July 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MLDM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Machine Learning and Data Mining in Pattern Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"New York, NY","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 July 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 July 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mldm2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.mldm.de\/index.php","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}