{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T04:02:14Z","timestamp":1742961734348,"version":"3.40.3"},"publisher-location":"Cham","reference-count":39,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319959566"},{"type":"electronic","value":"9783319959573"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-319-95957-3_81","type":"book-chapter","created":{"date-parts":[[2018,7,5]],"date-time":"2018-07-05T07:31:20Z","timestamp":1530775880000},"page":"767-776","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":15,"title":["Classification of Foetal Distress and Hypoxia Using Machine Learning Approaches"],"prefix":"10.1007","author":[{"given":"Rounaq","family":"Abbas","sequence":"first","affiliation":[]},{"given":"Abir Jaafar","family":"Hussain","sequence":"additional","affiliation":[]},{"given":"Dhiya","family":"Al-Jumeily","sequence":"additional","affiliation":[]},{"given":"Thar","family":"Baker","sequence":"additional","affiliation":[]},{"given":"Asad","family":"Khattak","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,7,6]]},"reference":[{"issue":"1","key":"81_CR1","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1016\/j.ejogrb.2013.04.014","volume":"170","author":"VS Talaulikar","year":"2013","unstructured":"Talaulikar, V.S., Arulkumaran, S.: Maternal, perinatal and long-term outcomes after assisted reproductive techniques (ART): implications for clinical practice. Eur. J. Obstet. Gynaecol. Reprod. Biol. 170(1), 13\u201319 (2013)","journal-title":"Eur. J. Obstet. Gynaecol. Reprod. Biol."},{"issue":"3","key":"81_CR2","doi-asserted-by":"publisher","first-page":"F246","DOI":"10.1136\/fn.80.3.F246","volume":"80","author":"CS Bobrow","year":"1999","unstructured":"Bobrow, C.S., Soothill, P.W.: Causes and consequences of fetal acidosis. Arch. Dis. Child. Fetal Neonatal Edition 80(3), F246\u2013F249 (1999)","journal-title":"Arch. Dis. Child. Fetal Neonatal Edition"},{"issue":"1","key":"81_CR3","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1007\/s12575-009-9006-z","volume":"11","author":"MA Hasan","year":"2009","unstructured":"Hasan, M.A., Reaz, M.B.I., Ibrahimy, M.I., Hussain, M.S., Uddin, J.: Detection and processing techniques of FECG signal for fetal monitoring. Biol. Proced. Online 11(1), 263 (2009)","journal-title":"Biol. Proced. Online"},{"key":"81_CR4","first-page":"68","volume":"9","author":"VS Talaulikar","year":"2012","unstructured":"Talaulikar, V.S., Arulkumaran, S.: Persistent challenge of intrapartum fetal heart rate monitoring. Dasgupta\u2019s Recent Adv. Obstet. Gynecol. 9, 68 (2012)","journal-title":"Dasgupta\u2019s Recent Adv. Obstet. Gynecol."},{"issue":"7656","key":"81_CR5","doi-asserted-by":"publisher","first-page":"1284","DOI":"10.1136\/bmj.39553.406991.25","volume":"336","author":"E Wiberg-Itzel","year":"2008","unstructured":"Wiberg-Itzel, E., Lipponer, C., Norman, M., Herbst, A., Prebensen, D., Hansson, A., Bryngelsson, A.L., Christoffersson, M., Sennstr\u00f6m, M., Wennerholm, U.B., Nordstr\u00f6m, L.: Determination of pH or lactate in fetal scalp blood in management of intrapartum fetal distress: randomised controlled multicentre trial. BMJ 336(7656), 1284\u20131287 (2008)","journal-title":"BMJ"},{"key":"81_CR6","doi-asserted-by":"publisher","first-page":"1021","DOI":"10.1016\/0002-9378(95)91320-3","volume":"173","author":"AM Vintzileos","year":"1995","unstructured":"Vintzileos, A.M., Nochimson, D.J., Antsaklis, A., Varvarigos, I., Guzman, I., Knuppel, R.A.: Comparison of intrapartum electronic fetal heart monitoring versus intermittent auscultation in detecting fetal acidemia at birth. Am. J. Obstet. Gynecol. 173, 1021\u20131024 (1995)","journal-title":"Am. J. Obstet. Gynecol."},{"key":"81_CR7","volume-title":"Fetal Heart Rate Monitoring. A Practical Guide","author":"I Ingemarsson","year":"1993","unstructured":"Ingemarsson, I., Ingemarsson, E., Spencer, J.A.D.: Fetal Heart Rate Monitoring. A Practical Guide. Oxford University Press, Oxford (1993)"},{"key":"81_CR8","doi-asserted-by":"publisher","first-page":"906","DOI":"10.1016\/0002-9378(67)90515-7","volume":"97","author":"J Bretscher","year":"1967","unstructured":"Bretscher, J., Saling, E.: pH values in the human fetus during labor. Am. J. Obstet. Gynecol. 97, 906\u2013911 (1967)","journal-title":"Am. J. Obstet. Gynecol."},{"key":"81_CR9","doi-asserted-by":"publisher","first-page":"332","DOI":"10.1111\/j.1471-0528.2006.00859.x","volume":"113","author":"D Tuffnell","year":"2006","unstructured":"Tuffnell, D., Haw, W.L., Wilkinson, K.: How long does a fetal scalp blood sample take? BJOG 113, 332\u2013334 (2006)","journal-title":"BJOG"},{"key":"81_CR10","first-page":"1103","volume":"78","author":"KG Goldaber","year":"1991","unstructured":"Goldaber, K.G., Gilstrap, L.C., Leveno, K.J., Dags, J.S., McIntire, D.D.: Pathologic fetal acidemia. Obstet. Gynecol. 78, 1103\u20131107 (1991)","journal-title":"Obstet. Gynecol."},{"issue":"4","key":"81_CR11","doi-asserted-by":"publisher","first-page":"379","DOI":"10.1016\/S0022-3476(58)80058-X","volume":"52","author":"LS James","year":"1958","unstructured":"James, L.S., Weisbrot, I.M., Prince, C.E., Holaday, D.A., Apgar, V.: The acid-base status of human infants in relation to birth asphyxia and the onset of respiration. J. Paediatr. 52(4), 379\u2013394 (1958)","journal-title":"J. Paediatr."},{"key":"81_CR12","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1111\/j.1471-0528.1998.tb09346.x","volume":"105","author":"M Westgren","year":"1998","unstructured":"Westgren, M., Kuger, K., Ek, S., Grunevald, C., Kublickas, M., Naka, K., et al.: Lactate compared with pH analysis at fetal scalp blood sampling: a prospective randomised study. Br. J. Obstet. Gynaecol. 105, 29\u201333 (1998)","journal-title":"Br. J. Obstet. Gynaecol."},{"key":"81_CR13","doi-asserted-by":"publisher","first-page":"c1471","DOI":"10.1136\/bmj.c1471","volume":"340","author":"GL Malin","year":"2010","unstructured":"Malin, G.L., Morris, R.K., Khan, K.S.: Strength of association between umbilical cord pH and perinatal and long-term outcomes: systematic review and meta-analysis. BMJ 340, c1471 (2010)","journal-title":"BMJ"},{"key":"81_CR14","doi-asserted-by":"crossref","unstructured":"ACOG Committee on Obstetric Practice: ACOG Committee Opinion No. 348, November 2006: Umbilical cord blood gas and acid-base analysis. Obstetrics and gynaecology, 108(5), p. 1319 (2006)","DOI":"10.1097\/00006250-200611000-00058"},{"key":"81_CR15","unstructured":"https:\/\/www.abclawcenters.com\/practice-areas\/diagnostic-tests\/hypoxic-ischemic-encephalopathy-and-umbilical-cord-blood-gases\/"},{"issue":"7","key":"81_CR16","doi-asserted-by":"publisher","first-page":"824","DOI":"10.1111\/j.1471-0528.2012.03335.x","volume":"119","author":"P Yeh","year":"2012","unstructured":"Yeh, P., Emary, K., Impey, L.: The relationship between umbilical cord arterial pH and serious adverse neonatal outcome: analysis of 51 519 consecutive validated samples. BJOG: Int. J. Obstet. Gynaecol. 119(7), 824\u2013831 (2012)","journal-title":"BJOG: Int. J. Obstet. Gynaecol."},{"issue":"8","key":"81_CR17","doi-asserted-by":"publisher","first-page":"848","DOI":"10.1111\/j.1471-0528.2001.00195.x","volume":"108","author":"BK Strachan","year":"2001","unstructured":"Strachan, B.K., Sahota, D.S., Wijngaarden, W.J., James, D.K., Chang, A.M.: Computerised analysis of the fetal heart rate and relation to acidaemia at delivery. BJOG Int. J. Obstet. Gynaecol. 108(8), 848\u2013852 (2001)","journal-title":"BJOG Int. J. Obstet. Gynaecol."},{"issue":"1","key":"81_CR18","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1007\/s00521-011-0743-y","volume":"22","author":"A Georgieva","year":"2013","unstructured":"Georgieva, A., Payne, S.J., Moulden, M., Redman, C.W.: Artificial neural networks applied to fetal monitoring in labour. Neural Comput. Appl. 22(1), 85\u201393 (2013)","journal-title":"Neural Comput. Appl."},{"issue":"4","key":"81_CR19","first-page":"29","volume":"30","author":"M Je\u017cewski","year":"2010","unstructured":"Je\u017cewski, M., Czaba\u0144ski, R., Wr\u00f3bel, J., Horoba, K.: Analysis of extracted cardiotocographic signal features to improve automated prediction of fetal outcome. Biocybern. Biomed. Eng. 30(4), 29\u201347 (2010)","journal-title":"Biocybern. Biomed. Eng."},{"issue":"9","key":"81_CR20","doi-asserted-by":"publisher","first-page":"688","DOI":"10.1111\/j.1471-0528.1995.tb11425.x","volume":"102","author":"RD Keith","year":"1995","unstructured":"Keith, R.D., Beckley, S., Garibaldi, J.M., Westgate, J.A., Ifeachor, E.C., Greene, K.R.: A multicentre comparative study of 17 experts and an intelligent computer system for managing labour using the cardiotocogram. BJOG Int. J. Obstet. Gynaecol. 102(9), 688\u2013700 (1995)","journal-title":"BJOG Int. J. Obstet. Gynaecol."},{"key":"81_CR21","doi-asserted-by":"crossref","unstructured":"Magenes, G., Signorini, M.G., Arduini, D.: Classification of cardiotocographic records by neural networks. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, vol. 3, pp. 637\u2013641. IEEE (2000)","DOI":"10.1109\/IJCNN.2000.861394"},{"issue":"5","key":"81_CR22","doi-asserted-by":"publisher","first-page":"849","DOI":"10.14716\/ijtech.v7i5.1370","volume":"7","author":"AA Abdillah","year":"2016","unstructured":"Abdillah, A.A.: Suwarno: diagnosis of diabetes using support vector machines with radial basis function kernels. Int. J. Technol. 7(5), 849\u2013858 (2016)","journal-title":"Int. J. Technol."},{"issue":"03","key":"81_CR23","doi-asserted-by":"publisher","first-page":"411","DOI":"10.1142\/S0218213006002746","volume":"15","author":"G Georgoulas","year":"2006","unstructured":"Georgoulas, G., Stylios, C., Groumpos, P.: Feature extraction and classification of foetal heart rate using wavelet analysis and support vector machines. Int. J. Artif. Intell. Tools 15(03), 411\u2013432 (2006)","journal-title":"Int. J. Artif. Intell. Tools"},{"issue":"2","key":"81_CR24","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1016\/j.bspc.2007.05.003","volume":"2","author":"G Georgoulas","year":"2007","unstructured":"Georgoulas, G., Gavrilis, D., Tsoulos, I.G., Stylios, C., Bernardes, J., Groumpos, P.P.: Novel approach for fetal heart rate classification introducing grammatical evolution. Biomed. Signal Process. Control 2(2), 69\u201379 (2007)","journal-title":"Biomed. Signal Process. Control"},{"key":"81_CR25","doi-asserted-by":"publisher","first-page":"771","DOI":"10.1109\/TBME.2009.2035818","volume":"57","author":"PA Warrick","year":"2010","unstructured":"Warrick, P.A., Hamilton, E.F., Kearney, R.E., Precup, D.: Classification of normal and hypoxic fetuses using system identification from intrapartum cardiotocography. IEEE Trans. Biomed. Eng. 57, 771\u2013779 (2010)","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"4","key":"81_CR26","doi-asserted-by":"publisher","first-page":"350","DOI":"10.1016\/j.bspc.2011.06.008","volume":"7","author":"J Spilka","year":"2012","unstructured":"Spilka, J., Chud\u00e1\u010dek, V., Kouck\u00fd, M., Lhotsk\u00e1, L., Huptych, M., Jank\u016f, P., Georgoulas, G., Stylios, C.: Using nonlinear features for fetal heart rate classification. Biomed. Signal Process. Control 7(4), 350\u2013357 (2012)","journal-title":"Biomed. Signal Process. Control"},{"key":"81_CR27","unstructured":"https:\/\/physionet.org\/physiobank\/database\/ctu-uhb-ctgdb\/"},{"key":"81_CR28","doi-asserted-by":"crossref","unstructured":"Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Annals of statistics, pp. 1189\u20131232 (2001)","DOI":"10.1214\/aos\/1013203451"},{"key":"81_CR29","unstructured":"Hastie, T., Qian, J.: Glmnet Vignette (2014)"},{"issue":"3","key":"81_CR30","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1080\/00031305.1992.10475879","volume":"46","author":"NS Altman","year":"1992","unstructured":"Altman, N.S.: An introduction to kernel and nearest-neighbour nonparametric regression. Am. Stat. 46(3), 175\u2013185 (1992)","journal-title":"Am. Stat."},{"issue":"3","key":"81_CR31","first-page":"18","volume":"2","author":"A Liaw","year":"2002","unstructured":"Liaw, A., Wiener, M.: Classification and regression by random Forest. R News 2(3), 18\u201322 (2002)","journal-title":"R News"},{"key":"81_CR32","volume-title":"Random Forests","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random Forests. Statistics Department, University of California, Machine learning (2001)"},{"issue":"7","key":"81_CR33","doi-asserted-by":"publisher","first-page":"1145","DOI":"10.1016\/S0031-3203(96)00142-2","volume":"30","author":"AP Bradley","year":"1997","unstructured":"Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 1145\u20131159 (1997)","journal-title":"Pattern Recogn."},{"key":"81_CR34","unstructured":"Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2005)"},{"key":"81_CR35","first-page":"2579","volume":"9","author":"LVD Maaten","year":"2008","unstructured":"Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579\u20132605 (2008)","journal-title":"J. Mach. Learn. Res."},{"key":"81_CR36","unstructured":"Noreen, E.W.: Computer intensive methods for hypothesis testing: An introduction (1989)"},{"issue":"6397","key":"81_CR37","doi-asserted-by":"publisher","first-page":"943","DOI":"10.1136\/bmj.287.6397.943","volume":"287","author":"GS Sykes","year":"1983","unstructured":"Sykes, G.S., Molloy, P.M., Johnson, P., Stirrat, G.M., Turnbull, A.C.: Fetal distress and the condition of newborn infants. Br. Med. J. (Clin. Res. Ed.) 287(6397), 943\u2013945 (1983)","journal-title":"Br. Med. J. (Clin. Res. Ed.)"},{"issue":"2","key":"81_CR38","doi-asserted-by":"publisher","first-page":"112","DOI":"10.1016\/0028-2243(87)90181-X","volume":"24","author":"PJ Steer","year":"1987","unstructured":"Steer, P.J.: Fetal monitoring\u2014Present and future. Eur. J. Obst. Gynecol. Reprod. Biol. 24(2), 112\u2013117 (1987)","journal-title":"Eur. J. Obst. Gynecol. Reprod. Biol."},{"issue":"1","key":"81_CR39","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1111\/j.1471-0528.1987.tb02256.x","volume":"94","author":"P Berg","year":"1987","unstructured":"Berg, P., Schmidt, S., Gesche, J., Saling, E.: Fetal distress and the condition of the newborn using cardiotocography and fetal blood analysis during labour. BJOG Int. J. Obst. Gynecol. 94(1), 72\u201375 (1987)","journal-title":"BJOG Int. J. Obst. Gynecol."}],"container-title":["Lecture Notes in Computer Science","Intelligent Computing Methodologies"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-95957-3_81","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T10:29:26Z","timestamp":1710325766000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-95957-3_81"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783319959566","9783319959573"],"references-count":39,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-95957-3_81","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"6 July 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Wuhan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 August 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 August 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icic2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/ic-ic.tongji.edu.cn\/2018\/index.htm","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"LOD","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"632","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"275","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"72","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"44% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.46","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}