{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,11]],"date-time":"2025-04-11T16:06:21Z","timestamp":1744387581336,"version":"3.37.3"},"publisher-location":"Cham","reference-count":26,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319951614"},{"type":"electronic","value":"9783319951621"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-319-95162-1_4","type":"book-chapter","created":{"date-parts":[[2018,7,3]],"date-time":"2018-07-03T04:15:34Z","timestamp":1530591334000},"page":"53-66","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["A Total Variation Diminishing Hopmoc Scheme for Numerical Time Integration of Evolutionary Differential Equations"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-3874-784X","authenticated-orcid":false,"given":"Diego N.","family":"Brand\u00e3o","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4863-542X","authenticated-orcid":false,"given":"Sanderson L.","family":"Gonzaga de Oliveira","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6863-5067","authenticated-orcid":false,"given":"Mauricio","family":"Kischinhevsky","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4694-7182","authenticated-orcid":false,"given":"Carla","family":"Osthoff","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0467-3424","authenticated-orcid":false,"given":"Frederico","family":"Cabral","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,7,4]]},"reference":[{"key":"4_CR1","doi-asserted-by":"crossref","unstructured":"Cabral, F.L., Osthoff, C., Costa, G., Brand\u00e3o, D.N., Kischinhevsky, M., Gonzaga de Oliveira, S.L.: Tuning up TVD HOPMOC method on Intel MIC Xeon Phi architectures with Intel Parallel Studio tools. In: 2017 29th International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW), Campinas, pp. 19\u201324 (2017). https:\/\/ieeexplore.ieee.org\/document\/8109000\/","DOI":"10.1109\/SBAC-PADW.2017.12"},{"key":"4_CR2","doi-asserted-by":"publisher","first-page":"600","DOI":"10.1016\/j.cam.2008.12.015","volume":"230","author":"H Ding","year":"2009","unstructured":"Ding, H., Zhang, Y.: A new difference scheme with high accuracy and absolute stability for solving convectiondiffusion equations. J. Comput. Appl. Math. 230, 600\u2013606 (2009)","journal-title":"J. Comput. Appl. Math."},{"key":"4_CR3","doi-asserted-by":"publisher","first-page":"459","DOI":"10.1016\/S0168-9274(00)00056-8","volume":"37","author":"A Holstad","year":"2001","unstructured":"Holstad, A.: The Koren upwind scheme for variable gridsize. Appl. Numer. Math. 37, 459\u2013487 (2001)","journal-title":"Appl. Numer. Math."},{"key":"4_CR4","unstructured":"Kischinhevsky, M.: An operator splitting for optimal message-passing computation of parabolic equation with hyperbolic dominance. In: SIAM Annual Meeting, Kansas City, MO (1996)"},{"key":"4_CR5","unstructured":"Kischinhevsky, M.: A spatially decoupled alternating direction procedure for convection-diffusion equations. In: Proceedings of the XXth CILAMCE Iberian Latin American Congress on Numerical Methods in Engineering (1999)"},{"key":"4_CR6","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1093\/imamat\/19.2.205","volume":"19","author":"CR Gane","year":"1977","unstructured":"Gane, C.R., Gourlay, A.R.: Block hopscotch procedures for second order parabolic differential equations. J. Inst. Math. Appl. 19, 205\u2013216 (1977)","journal-title":"J. Inst. Math. Appl."},{"key":"4_CR7","doi-asserted-by":"publisher","first-page":"667","DOI":"10.1137\/0113044","volume":"13","author":"P Gordon","year":"1965","unstructured":"Gordon, P.: Nonsymmetric difference equations. SIAM J. Appl. Math. 13, 667\u2013673 (1965)","journal-title":"SIAM J. Appl. Math."},{"key":"4_CR8","doi-asserted-by":"publisher","first-page":"375","DOI":"10.1093\/imamat\/6.4.375","volume":"6","author":"AR Gourlay","year":"1970","unstructured":"Gourlay, A.R.: Hopscotch: a fast second order partial differential equation solver. IMA J. Appl. Math. 6, 375\u2013390 (1970)","journal-title":"IMA J. Appl. Math."},{"key":"4_CR9","doi-asserted-by":"publisher","first-page":"216","DOI":"10.1093\/imamat\/7.2.216","volume":"7","author":"AR Gourlay","year":"1971","unstructured":"Gourlay, A.R., McGuire, G.R.: General Hopscotch algorithm for the numerical solution of partial differential equations. J. Inst. Math. Appl. 7, 216\u2013227 (1971)","journal-title":"J. Inst. Math. Appl."},{"key":"4_CR10","doi-asserted-by":"publisher","first-page":"201","DOI":"10.1016\/S0377-0427(77)80009-5","volume":"3","author":"AR Gourlay","year":"1977","unstructured":"Gourlay, A.R., McKee, S.: The construction of Hopscotch methods for parabolic and elliptic equations in two space dimensions with mixed derivative. J. Comput. Appl. Math. 3, 201\u2013206 (1977)","journal-title":"J. Comput. Appl. Math."},{"key":"4_CR11","doi-asserted-by":"publisher","first-page":"871","DOI":"10.1137\/0719063","volume":"19","author":"J Douglas Jr","year":"1982","unstructured":"Douglas Jr., J., Russel, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871\u2013885 (1982)","journal-title":"SIAM J. Numer. Anal."},{"key":"4_CR12","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1016\/0309-1708(90)90041-2","volume":"13","author":"MA Celia","year":"1990","unstructured":"Celia, M.A., Russel, T.F., Herrera, I., Ewing, R.E.: An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation. Adv. Water Resour. 13, 187\u2013206 (1990)","journal-title":"Adv. Water Resour."},{"key":"4_CR13","doi-asserted-by":"publisher","first-page":"1215","DOI":"10.1016\/S0309-1708(02)00104-5","volume":"25","author":"TF Russel","year":"2002","unstructured":"Russel, T.F., Celia, M.A.: An overview of research on Eulerian-Lagrangian localized adjoint methods (ELLAM). Adv. Water Resour. 25, 1215\u20131231 (2002)","journal-title":"Adv. Water Resour."},{"key":"4_CR14","doi-asserted-by":"crossref","unstructured":"Cabral, F.L., Osthoff, C., Kischinhevsky, M., Brand\u00e3o, D.: Hybrid MPI\/OpenMP\/OpenACC implementations for the solution of convection diffusion equations with Hopmoc method. In: Apduhan, B., Rocha, A.M., Misra, S., Taniar, D., Gervasi, O., Murgante, B. (eds.): 14th International Conference on Computational Science and its Applications (ICCSA) CPS, 196\u2013199. IEEE, July 2014","DOI":"10.1109\/ICCSA.2014.44"},{"key":"4_CR15","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1016\/0021-9991(83)90136-5","volume":"49","author":"A Harten","year":"1983","unstructured":"Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357\u2013393 (1983)","journal-title":"J. Comput. Phys."},{"key":"4_CR16","doi-asserted-by":"publisher","first-page":"2569","DOI":"10.1090\/mcom\/2942","volume":"84","author":"S Bartels","year":"2015","unstructured":"Bartels, S., Nochetto, R.H., Salgado, A.J.: A total variation diminishing interpolation operator and applications. Math. Comput. 84, 2569\u20132587 (2015)","journal-title":"Math. Comput."},{"issue":"8","key":"4_CR17","doi-asserted-by":"publisher","first-page":"839","DOI":"10.1080\/10407782.2014.949196","volume":"67","author":"BRB Fernandes","year":"2015","unstructured":"Fernandes, B.R.B., Gon\u00e7alves, A.D.R., Filho, E.P.D., Lima, I.C.M., Marcondes, F., Sepehrnoori, K.: A 3D total variation diminishing scheme for compositional reservoir simulation using the element-based finite-volume method. Numer. Heat Transfer, Part A 67(8), 839\u2013856 (2015)","journal-title":"Numer. Heat Transfer, Part A"},{"key":"4_CR18","doi-asserted-by":"publisher","first-page":"1375","DOI":"10.1080\/00207160701870860","volume":"86","author":"SRF Oliveira","year":"2009","unstructured":"Oliveira, S.R.F., Gonzaga de Oliveira, S.L., Kischinhevsky, M.: Convergence analysis of the Hopmoc method. Int. J. Comput. Math. 86, 1375\u20131393 (2009)","journal-title":"Int. J. Comput. Math."},{"key":"4_CR19","doi-asserted-by":"publisher","first-page":"1990","DOI":"10.1175\/1520-0493(1997)125<1990:TSPSAT>2.0.CO;2","volume":"125","author":"J Thuburn","year":"1997","unstructured":"Thuburn, J.: TVD schemes, positive schemes and universal limiter. Mon. Weather Rev. 125, 1990\u20131993 (1997)","journal-title":"Mon. Weather Rev."},{"issue":"3","key":"4_CR20","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1002\/cpa.3160050303","volume":"5","author":"R Courant","year":"1952","unstructured":"Courant, R., Isaacson, E., Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure Appl. Math. 5(3), 243\u2013255 (1952)","journal-title":"Commun. Pure Appl. Math."},{"key":"4_CR21","doi-asserted-by":"publisher","first-page":"182","DOI":"10.1016\/j.jcp.2007.01.021","volume":"224","author":"NP Waterson","year":"2007","unstructured":"Waterson, N.P., Deconinck, H.: Design principles for bounded higher-order convection schemes - a unified approach. J. Comput. Phys. 224, 182\u2013207 (2007)","journal-title":"J. Comput. Phys."},{"issue":"5","key":"4_CR22","doi-asserted-by":"publisher","first-page":"995","DOI":"10.1137\/0721062","volume":"21","author":"PK Sweby","year":"1984","unstructured":"Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995\u20131011 (1984)","journal-title":"SIAM J. Numer. Anal."},{"key":"4_CR23","unstructured":"Roe, P.L., Baines, M.J.: Algorithms for advection and shock problems. In: Viviand, H. (ed.): Proceedings of the Fourth GAMM Conference on Numerical Methods in Fluid Mechanics. Notes on Numerical Fluid Mechanics, vol. 5, pp. 281\u2013290. Vieweg, Paris, France (1982)"},{"key":"4_CR24","unstructured":"Roe, P.L.: Some contributions to the modelling of discontinuous flows. In: Engquist, B.E., Osher, S., Somerville, R.C.J. (eds.): Proceedings of the Fifteenth Summer Seminar on Applied Mathematics Large-Scale Computations in Fluid Mechanics. Lectures in Applied Mathematics, vol. 22, pp. 163\u2013193. AMS-SIAM Summer Seminar, American Mathematical Society, La Jolla, CA (1985)"},{"key":"4_CR25","doi-asserted-by":"publisher","first-page":"361","DOI":"10.1016\/0021-9991(74)90019-9","volume":"14","author":"B Leer van","year":"1974","unstructured":"van Leer, B.: Towards the ultimate conservative difference schemes. J. Comput. Phys. 14, 361\u2013370 (1974)","journal-title":"J. Comput. Phys."},{"key":"4_CR26","unstructured":"Koren, B.: A robust upwind discretization method for advection, diffusion and source terms. In: Vreugdenhil, C.B., Koren, B. (eds.) Numerical Methods for Advection - Diffusion Problems. Notes on Numerical Fluid Mechanics, vol. 45, pp. 117\u2013138. Friedrich Vieweg & Sohn Verlagsgesellschaft, Braunschweig, Germany, October 1993"}],"container-title":["Lecture Notes in Computer Science","Computational Science and Its Applications \u2013 ICCSA 2018"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-95162-1_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,20]],"date-time":"2019-10-20T04:09:22Z","timestamp":1571544562000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-95162-1_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783319951614","9783319951621"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-95162-1_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]}}}