{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T14:33:21Z","timestamp":1725978801125},"publisher-location":"Cham","reference-count":55,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319920061"},{"type":"electronic","value":"9783319920078"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-319-92007-8_11","type":"book-chapter","created":{"date-parts":[[2018,5,21]],"date-time":"2018-05-21T15:02:40Z","timestamp":1526914960000},"page":"121-132","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Cognition-Based Deep Learning: Progresses and Perspectives"],"prefix":"10.1007","author":[{"given":"Kai","family":"Yi","sequence":"first","affiliation":[]},{"given":"Shitao","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Chao","family":"Xia","sequence":"additional","affiliation":[]},{"given":"Nanning","family":"Zheng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,5,22]]},"reference":[{"key":"11_CR1","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097\u20131105 (2012)"},{"key":"11_CR2","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"11_CR3","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., et al.: Going deeper with convolutions. In: CVPR (2015)","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"11_CR4","unstructured":"Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)"},{"issue":"7540","key":"11_CR5","doi-asserted-by":"publisher","first-page":"529","DOI":"10.1038\/nature14236","volume":"518","author":"V Mnih","year":"2015","unstructured":"Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)","journal-title":"Nature"},{"key":"11_CR6","doi-asserted-by":"crossref","unstructured":"Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431\u20133440 (2015)","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"11_CR7","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91\u201399 (2015)"},{"key":"11_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1007\/978-3-319-46448-0_2","volume-title":"Computer Vision \u2013 ECCV 2016","author":"W Liu","year":"2016","unstructured":"Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, Alexander C.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21\u201337. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_2"},{"key":"11_CR9","doi-asserted-by":"crossref","unstructured":"Graves, A., Mohamed, A., Hinton,G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645\u20136649. IEEE (2013)","DOI":"10.1109\/ICASSP.2013.6638947"},{"key":"11_CR10","unstructured":"Yin, W., Kann, K., Yu, M., Sch\u00fctze, H.: Comparative study of CNN and RNN for natural language processing. arXiv preprint arXiv:1702.01923 (2017)"},{"issue":"7553","key":"11_CR11","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)","journal-title":"Nature"},{"issue":"1","key":"11_CR12","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1207\/s15516709cog0401_2","volume":"4","author":"HA Simon","year":"1980","unstructured":"Simon, H.A.: Cognitive science: the newest science of the artificial. Cogn. Sci. 4(1), 33\u201346 (1980)","journal-title":"Cogn. Sci."},{"key":"11_CR13","doi-asserted-by":"crossref","unstructured":"Wu, M., Hughes, M.C., Parbhoo, S., Zazzi, M., Roth, V., Doshi-Velez, F.: Beyond sparsity: tree regularization of deep models for interpretability. arXiv preprint arXiv:1711.06178 (2017)","DOI":"10.1609\/aaai.v32i1.11501"},{"key":"11_CR14","unstructured":"Ritter, S., Barrett, D.G.T., Santoro, A., Botvinick, M.M.: Cognitive psychology for deep neural networks: a shape bias case study (2017)"},{"key":"11_CR15","doi-asserted-by":"crossref","unstructured":"Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)","DOI":"10.21437\/Interspeech.2014-80"},{"key":"11_CR16","doi-asserted-by":"crossref","unstructured":"Miao, Y., Li, J., Wang, Y., Zhang, S.-X., Gong, Y.: Simplifying long short-term memory acoustic models for fast training and decoding. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2284\u20132288. IEEE (2016)","DOI":"10.1109\/ICASSP.2016.7472084"},{"issue":"5","key":"11_CR17","doi-asserted-by":"publisher","first-page":"544","DOI":"10.1136\/amiajnl-2011-000464","volume":"18","author":"M Prakash","year":"2011","unstructured":"Prakash, M., Ohno-Machado, L., Chapman, W.W.: Natural language processing: an introduction. J. Am. Med. Inform. Assoc. 18(5), 544\u2013551 (2011)","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"11_CR18","unstructured":"Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3367\u20133375 (2015)"},{"key":"11_CR19","doi-asserted-by":"crossref","unstructured":"Tripathi, S., Lipton, Z.C., Belongie, S., Nguyen, T.: Context matters: refining object detection in video with recurrent neural networks. arXiv preprint arXiv:1607.04648 (2016)","DOI":"10.5244\/C.30.44"},{"issue":"2","key":"11_CR20","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1109\/72.279181","volume":"5","author":"Y Bengio","year":"1994","unstructured":"Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157\u2013166 (1994)","journal-title":"IEEE Trans. Neural Netw."},{"issue":"8","key":"11_CR21","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735\u20131780 (1997)","journal-title":"Neural Comput."},{"key":"11_CR22","doi-asserted-by":"crossref","unstructured":"Cho, K., Van Merri\u00ebnboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)","DOI":"10.3115\/v1\/D14-1179"},{"key":"11_CR23","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1146\/annurev.psych.59.103006.093615","volume":"59","author":"J Jonides","year":"2008","unstructured":"Jonides, J., Lewis, R.L., Nee, D.E., Lustig, C.A., Berman, M.G., Moore, K.S.: The mind and brain of short-term memory. Annu. Rev. Psychol. 59, 193\u2013224 (2008)","journal-title":"Annu. Rev. Psychol."},{"issue":"13","key":"11_CR24","doi-asserted-by":"publisher","first-page":"3521","DOI":"10.1073\/pnas.1611835114","volume":"114","author":"J Kirkpatrick","year":"2017","unstructured":"Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521\u20133526 (2017)","journal-title":"Proc. Natl. Acad. Sci."},{"key":"11_CR25","unstructured":"Zenke, F., Poole, B., Ganguli, S.: Improved multitask learning through synaptic intelligence. arXiv preprint arXiv:1703.04200 (2017)"},{"key":"11_CR26","doi-asserted-by":"crossref","unstructured":"Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. arXiv preprint arXiv:1711.09601 (2017)","DOI":"10.1007\/978-3-030-01219-9_9"},{"issue":"2","key":"11_CR27","doi-asserted-by":"publisher","first-page":"353","DOI":"10.1109\/TPAMI.2010.70","volume":"33","author":"T Liu","year":"2011","unstructured":"Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.-Y.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353\u2013367 (2011)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"11_CR28","unstructured":"Helgason, H.P.: General attention mechanism for artificial intelligence systems (2013)"},{"key":"11_CR29","unstructured":"Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)"},{"key":"11_CR30","unstructured":"Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. arXiv preprint arXiv:1705.03122 (2017)"},{"key":"11_CR31","doi-asserted-by":"crossref","unstructured":"Yang, Z., Yang, D., Dyer, C., He, X., Smola, A.J., Hovy, E.H.: Hierarchical attention networks for document classification. In: HLT-NAACL (2016)","DOI":"10.18653\/v1\/N16-1174"},{"key":"11_CR32","doi-asserted-by":"crossref","unstructured":"Chaplot, D.S., Sathyendra, K.M., Pasumarthi, R.K., Rajagopal, D., Salakhutdinov, R.: Gated-attention architectures for task-oriented language grounding. arXiv preprint arXiv:1706.07230 (2017)","DOI":"10.1609\/aaai.v32i1.11832"},{"key":"11_CR33","doi-asserted-by":"crossref","unstructured":"Dhingra, B., Liu, H., Yang, Z., Cohen, W.W., Salakhutdinov, R.: Gated-attention readers for text comprehension. arXiv preprint arXiv:1606.01549 (2016)","DOI":"10.18653\/v1\/P17-1168"},{"key":"11_CR34","unstructured":"Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. In: Advances in Neural Information Processing Systems, pp. 2204\u20132212 (2014)"},{"key":"11_CR35","unstructured":"Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with visual attention. Computer Science (2014)"},{"key":"11_CR36","unstructured":"Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., Bengio, Y.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048\u20132057 (2015)"},{"key":"11_CR37","doi-asserted-by":"crossref","unstructured":"Kuen, J., Wang, Z., Wang, G.: Recurrent attentional networks for saliency detection. arXiv preprint arXiv:1604.03227 (2016)","DOI":"10.1109\/CVPR.2016.399"},{"key":"11_CR38","unstructured":"Li, G., Yu, Y.: Visual saliency based on multiscale deep features. arXiv preprint arXiv:1503.08663 (2015)"},{"key":"11_CR39","unstructured":"Liu, N., Han, J., Zhang, D., Wen, S., Liu, T.: Predicting eye fixations using convolutional neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 362\u2013370. IEEE (2015)"},{"issue":"9","key":"11_CR40","doi-asserted-by":"publisher","first-page":"4446","DOI":"10.1109\/TIP.2017.2710620","volume":"26","author":"SSS Kruthiventi","year":"2017","unstructured":"Kruthiventi, S.S.S., Ayush, K., Babu, R.V.: Deepfix: a fully convolutional neural network for predicting human eye fixations. IEEE Trans. Image Process. 26(9), 4446\u20134456 (2017)","journal-title":"IEEE Trans. Image Process."},{"key":"11_CR41","unstructured":"Cornia, M., Baraldi, L., Serra, G., Cucchiara, R.: Predicting human eye fixations via an LSTM-based saliency attentive model. arXiv preprint arXiv:1611.09571 (2016)"},{"key":"11_CR42","unstructured":"Sorokin, I., Seleznev, A., Pavlov, M., Fedorov, A., Ignateva, A.: Deep attention recurrent q-network. arXiv preprint arXiv:1512.01693 (2015)"},{"key":"11_CR43","unstructured":"Choi, J., Lee, B.-J., Zhang, B.-T.: Multi-focus attention network for efficient deep reinforcement learning. arXiv preprint arXiv:1712.04603 (2017)"},{"key":"11_CR44","doi-asserted-by":"crossref","unstructured":"Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines that learn and think like people. CoRR, abs\/1604.00289 (2016)","DOI":"10.1017\/S0140525X16001837"},{"issue":"3","key":"11_CR45","doi-asserted-by":"publisher","first-page":"299","DOI":"10.1016\/0885-2014(88)90014-7","volume":"3","author":"B Landau","year":"1988","unstructured":"Landau, B., Smith, L.B., Jones, S.S.: The importance of shape in early lexical learning. Cogn. Dev. 3(3), 299\u2013321 (1988)","journal-title":"Cogn. Dev."},{"key":"11_CR46","unstructured":"Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, pp. 3630\u20133638 (2016)"},{"key":"11_CR47","doi-asserted-by":"crossref","unstructured":"Stewart, R., Ermon, S.: Label-free supervision of neural networks with physics and domain knowledge. In: AAAI, pp. 2576\u20132582 (2017)","DOI":"10.1609\/aaai.v31i1.10934"},{"key":"11_CR48","doi-asserted-by":"crossref","unstructured":"Hu, Z., Ma, X., Liu, Z., Hovy, E., Xing, E.: Harnessing deep neural networks with logic rules. arXiv preprint arXiv:1603.06318 (2016)","DOI":"10.18653\/v1\/P16-1228"},{"issue":"Jul","key":"11_CR49","first-page":"2001","volume":"11","author":"K Ganchev","year":"2010","unstructured":"Ganchev, K., Gillenwater, J., Taskar, B., et al.: Posterior regularization for structured latent variable models. J. Mach. Learn. Res. 11(Jul), 2001\u20132049 (2010)","journal-title":"J. Mach. Learn. Res."},{"key":"11_CR50","doi-asserted-by":"crossref","unstructured":"Hu, Z., Yang, Z., Salakhutdinov, R., Xing, E.: Deep neural networks with massive learned knowledge. In: Conference on Empirical Methods in Natural Language Processing, pp. 1670\u20131679 (2016)","DOI":"10.18653\/v1\/D16-1173"},{"issue":"8","key":"11_CR51","doi-asserted-by":"publisher","first-page":"2554","DOI":"10.1073\/pnas.79.8.2554","volume":"79","author":"JJ Hopfield","year":"1982","unstructured":"Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554\u20132558 (1982)","journal-title":"Proc. Natl. Acad. Sci."},{"key":"11_CR52","unstructured":"Krotov, D., Hopfield, J.J.: Dense associative memory for pattern recognition. CoRR, abs\/1606.01164 (2016)"},{"key":"11_CR53","unstructured":"Oh, J., Chockalingam, V., Singh, S., Lee, H.: Control of memory, active perception, and action in minecraft. arXiv preprint arXiv:1605.09128 (2016)"},{"key":"11_CR54","unstructured":"Parisotto, E., Salakhutdinov, R.: Neural map: structured memory for deep reinforcement learning. arXiv preprint arXiv:1702.08360 (2017)"},{"key":"11_CR55","doi-asserted-by":"crossref","unstructured":"Yin, H., Pan, S.J.: Knowledge transfer for deep reinforcement learning with hierarchical experience replay. In: AAAI, pp. 1640\u20131646 (2017)","DOI":"10.1609\/aaai.v31i1.10733"}],"container-title":["IFIP Advances in Information and Communication Technology","Artificial Intelligence Applications and Innovations"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-92007-8_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,8,23]],"date-time":"2022-08-23T23:35:38Z","timestamp":1661297738000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-92007-8_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783319920061","9783319920078"],"references-count":55,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-92007-8_11","relation":{},"ISSN":["1868-4238","1868-422X"],"issn-type":[{"type":"print","value":"1868-4238"},{"type":"electronic","value":"1868-422X"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"22 May 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"AIAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"IFIP International Conference on Artificial Intelligence Applications and Innovations","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Rhodes","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 May 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 May 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aiai2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/easyconferences.eu\/aiai2018\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}