{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T14:57:19Z","timestamp":1725980239226},"publisher-location":"Cham","reference-count":32,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319914848"},{"type":"electronic","value":"9783319914855"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-319-91485-5_23","type":"book-chapter","created":{"date-parts":[[2018,5,30]],"date-time":"2018-05-30T11:32:37Z","timestamp":1527679957000},"page":"298-314","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":9,"title":["Forecasting the Chilean Electoral Year: Using Twitter to Predict the Presidential Elections of 2017"],"prefix":"10.1007","author":[{"given":"Sebasti\u00e1n","family":"Rodr\u00edguez","sequence":"first","affiliation":[]},{"given":"H\u00e9ctor","family":"Allende-Cid","sequence":"additional","affiliation":[]},{"given":"Wenceslao","family":"Palma","sequence":"additional","affiliation":[]},{"given":"Rodrigo","family":"Alfaro","sequence":"additional","affiliation":[]},{"given":"Cristian","family":"Gonzalez","sequence":"additional","affiliation":[]},{"given":"Claudio","family":"Elortegui","sequence":"additional","affiliation":[]},{"given":"Pedro","family":"Santander","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,5,31]]},"reference":[{"key":"23_CR1","unstructured":"Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of Twitter data. In: Proceedings of the Workshop on Languages in Social Media, pp. 30\u201338. Association for Computational Linguistics (2011)"},{"issue":"2","key":"23_CR2","doi-asserted-by":"publisher","first-page":"490","DOI":"10.1111\/ajps.12274","volume":"61","author":"N Beauchamp","year":"2017","unstructured":"Beauchamp, N.: Predicting and interpolating state-level polls using Twitter textual data. Am. J. Polit. Sci. 61(2), 490\u2013503 (2017)","journal-title":"Am. J. Polit. Sci."},{"key":"23_CR3","unstructured":"Bermingham, A., Smeaton, A.: On using twitter to monitor political sentiment and predict election results. In: Proceedings of the Workshop on Sentiment Analysis Where AI Meets Psychology (SAAIP 2011), pp. 2\u201310 (2011)"},{"key":"23_CR4","volume-title":"Classification and Regression Trees","author":"L Breiman","year":"1984","unstructured":"Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, New York (1984)"},{"issue":"1","key":"23_CR5","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45(1), 5\u201332 (2001). https:\/\/doi.org\/10.1023\/A:1010933404324","journal-title":"Mach. Learn."},{"key":"23_CR6","doi-asserted-by":"publisher","first-page":"230","DOI":"10.1016\/j.electstud.2015.11.017","volume":"41","author":"P Burnap","year":"2016","unstructured":"Burnap, P., Gibson, R., Sloan, L., Southern, R., Williams, M.: 140 characters to victory?: Using Twitter to predict the UK 2015 general election. Elect. Stud. 41, 230\u2013233 (2016)","journal-title":"Elect. Stud."},{"issue":"1","key":"23_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1080\/14697017.2017.1279824","volume":"17","author":"RT By","year":"2017","unstructured":"By, R.T., Ford, J., Randall, J.: Changing times: what organizations can learn from brexit and the 2016 us presidential election. J. Change Manag. 17(1), 1\u20138 (2017). https:\/\/doi.org\/10.1080\/14697017.2017.1279824","journal-title":"J. Change Manag."},{"issue":"2","key":"23_CR8","doi-asserted-by":"publisher","first-page":"340","DOI":"10.1177\/1461444813480466","volume":"16","author":"A Ceron","year":"2014","unstructured":"Ceron, A., Curini, L., Iacus, S.M., Porro, G.: Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens\u2019 political preferences with an application to Italy and France. New Media Soc. 16(2), 340\u2013358 (2014). https:\/\/doi.org\/10.1177\/1461444813480466","journal-title":"New Media Soc."},{"key":"23_CR9","doi-asserted-by":"crossref","DOI":"10.4324\/9781315582733","volume-title":"Politics and Big Data: Nowcasting and Forecasting Elections with Social Media","author":"A Ceron","year":"2016","unstructured":"Ceron, A., Curini, L., Iacus, S.M.: Politics and Big Data: Nowcasting and Forecasting Elections with Social Media. Taylor & Francis, New York (2016)"},{"key":"23_CR10","doi-asserted-by":"crossref","unstructured":"Chung, J., Mustafaraj, E.: Can collective sentiment expressed on twitter predict political elections? In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, pp. 1770\u20131771, AAAI 2011. AAAI Press (2011). http:\/\/dl.acm.org\/citation.cfm?id=2900423.2900687","DOI":"10.1609\/aaai.v25i1.8065"},{"issue":"3","key":"23_CR11","first-page":"273","volume":"20","author":"C Cortes","year":"1995","unstructured":"Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273\u2013297 (1995)","journal-title":"Mach. Learn."},{"issue":"1","key":"23_CR12","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1080\/19331681.2012.705080","volume":"10","author":"F Franch","year":"2013","unstructured":"Franch, F.: (Wisdom of the crowds)2: 2010 UK election prediction with social media. J. Inf. Technol. Polit. 10(1), 57\u201371 (2013). https:\/\/doi.org\/10.1080\/19331681.2012.705080","journal-title":"J. Inf. Technol. Polit."},{"key":"23_CR13","unstructured":"Freund, Y., Schapire, R.E.: A short introduction to boosting. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pp. 1401\u20131406. Morgan Kaufmann, San Francisco (1999)"},{"issue":"6","key":"23_CR14","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1109\/MIC.2012.137","volume":"16","author":"D Gayo-Avello","year":"2012","unstructured":"Gayo-Avello, D.: No, you cannot predict elections with Twitter. IEEE Internet Comput. 16(6), 91\u201394 (2012)","journal-title":"IEEE Internet Comput."},{"key":"23_CR15","unstructured":"Gayo Avello, D., Metaxas, P.T., Mustafaraj, E.: Limits of electoral predictions using twitter. In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media. Association for the Advancement of Artificial Intelligence (2011)"},{"key":"23_CR16","doi-asserted-by":"publisher","unstructured":"Jungherr, A., J\u00fcrgens, P., Schoen, H.: Why the pirate party won the German election of 2009 or the trouble with predictions: a response to Tumasjan, A., Sprenger, T.O., Sander, P.G., & Welpe, I.M. \"predicting elections with Twitter: what 140 characters reveal about political sentiment\". Soc. Sci. Comput. Rev. 30(2), 229\u2013234 (2012). https:\/\/doi.org\/10.1177\/0894439311404119","DOI":"10.1177\/0894439311404119"},{"issue":"538\u2013541","key":"23_CR17","first-page":"164","volume":"11","author":"E Kouloumpis","year":"2011","unstructured":"Kouloumpis, E., Wilson, T., Moore, J.D.: Twitter sentiment analysis: the good the bad and the OMG!. ICWSM 11(538\u2013541), 164 (2011)","journal-title":"ICWSM"},{"issue":"4","key":"23_CR18","first-page":"1","volume":"3","author":"RW Lariscy","year":"2009","unstructured":"Lariscy, R.W., Avery, E.J., Sweetser, K.D., Howes, P.: Monitoring public opinion in cyberspace: how corporate public relations is facing the challenge. Public Relat. J. 3(4), 1\u201317 (2009)","journal-title":"Public Relat. J."},{"key":"23_CR19","doi-asserted-by":"publisher","first-page":"415","DOI":"10.1007\/978-1-4614-3223-4_13","volume-title":"Mining Text Data","author":"B Liu","year":"2012","unstructured":"Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, C., Zhai, C. (eds.) Mining Text Data, pp. 415\u2013463. Springer, Boston (2012). https:\/\/doi.org\/10.1007\/978-1-4614-3223-4_13"},{"key":"23_CR20","unstructured":"Lui, C., Metaxas, P.T., Mustafaraj, E.: On the predictability of the us elections through search volume activity (2011)"},{"issue":"2","key":"23_CR21","doi-asserted-by":"publisher","first-page":"141","DOI":"10.1080\/17439880902923606","volume":"34","author":"C Madge","year":"2009","unstructured":"Madge, C., Meek, J., Wellens, J., Hooley, T.: Facebook, social integration and informal learning at university: \u2018it is more for socialising and talking to friends about work than for actually doing work\u2019. Learn. Media Technol. 34(2), 141\u2013155 (2009)","journal-title":"Learn. Media Technol."},{"key":"23_CR22","doi-asserted-by":"crossref","unstructured":"Metaxas, P.T., Mustafaraj, E., Gayo-Avello, D.: How (not) to predict elections. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), pp. 165\u2013171. IEEE (2011)","DOI":"10.1109\/PASSAT\/SocialCom.2011.98"},{"key":"23_CR23","unstructured":"Omnicore Agency: Twitter by the numbers: stats, demographics & fun facts. https:\/\/www.omnicoreagency.com\/twitter-statistics\/. Accessed 28 Dec 2017"},{"key":"23_CR24","unstructured":"Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREc, vol. 10 (2010)"},{"issue":"1\u20132","key":"23_CR25","first-page":"1","volume":"2","author":"B Pang","year":"2008","unstructured":"Pang, B., Lee, L., et al.: Opinion mining and sentiment analysis. Foundations and trends$$\\textregistered $$. Inf. Retriev. 2(1\u20132), 1\u2013135 (2008)","journal-title":"Inf. Retriev."},{"key":"23_CR26","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825\u20132830 (2011)","journal-title":"J. Mach. Learn. Res."},{"key":"23_CR27","unstructured":"Sang, E.T.K., Bos, J.: Predicting the 2011 Dutch senate election results with Twitter. In: Proceedings of the Workshop on Semantic Analysis in Social Media, pp. 53\u201360. Association for Computational Linguistics, Stroudsburg, PA, USA (2012). http:\/\/dl.acm.org\/citation.cfm?id=2389969.2389976"},{"issue":"1","key":"23_CR28","first-page":"28","volume":"90","author":"C Shirky","year":"2011","unstructured":"Shirky, C.: The political power of social media: technology, the public sphere, and political change. Foreign Aff. 90(1), 28\u201341 (2011)","journal-title":"Foreign Aff."},{"key":"23_CR29","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"412","DOI":"10.1007\/978-3-319-68557-1_36","volume-title":"Digital Nations \u2013 Smart Cities, Innovation, and Sustainability","author":"P Singh","year":"2017","unstructured":"Singh, P., Sawhney, R.S., Kahlon, K.S.: Forecasting the 2016 US presidential elections using sentiment analysis. In: Kar, A.K., Ilavarasan, P.V., Gupta, M.P., Dwivedi, Y.K., M\u00e4ntym\u00e4ki, M., Janssen, M., Simintiras, A., Al-Sharhan, S. (eds.) I3E 2017. LNCS, vol. 10595, pp. 412\u2013423. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-68557-1_36"},{"key":"23_CR30","unstructured":"Fung Global Retail & Technology: Deep dive social media in Latin America. Technical report, May 2016. https:\/\/www.fbicgroup.com\/sites\/default\/files\/Social"},{"issue":"1","key":"23_CR31","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1609\/icwsm.v4i1.14009","volume":"10","author":"A Tumasjan","year":"2010","unstructured":"Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with Twitter: what 140 characters reveal about political sentiment. ICWSM 10(1), 178\u2013185 (2010)","journal-title":"ICWSM"},{"issue":"5","key":"23_CR32","doi-asserted-by":"publisher","first-page":"110","DOI":"10.1109\/MC.2017.139","volume":"50","author":"NA Valentino","year":"2017","unstructured":"Valentino, N.A., King, J.L., Hill, W.W.: Polling and prediction in the 2016 presidential election. Computer 50(5), 110\u2013115 (2017)","journal-title":"Computer"}],"container-title":["Lecture Notes in Computer Science","Social Computing and Social Media. Technologies and Analytics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-91485-5_23","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T18:33:03Z","timestamp":1710268383000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-91485-5_23"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783319914848","9783319914855"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-91485-5_23","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"31 May 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SCSM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Social Computing and Social Media","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Las Vegas, NV","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 July 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 July 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ocsc2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2018.hci.international\/scsm","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}