{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T14:11:09Z","timestamp":1725977469490},"publisher-location":"Cham","reference-count":45,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319912523"},{"type":"electronic","value":"9783319912530"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-319-91253-0_61","type":"book-chapter","created":{"date-parts":[[2018,5,10]],"date-time":"2018-05-10T14:55:13Z","timestamp":1525964113000},"page":"657-667","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Direct Incorporation of $$L_1$$-Regularization into Generalized Matrix Learning Vector Quantization"],"prefix":"10.1007","author":[{"given":"Falko","family":"Lischke","sequence":"first","affiliation":[]},{"given":"Thomas","family":"Neumann","sequence":"additional","affiliation":[]},{"given":"Sven","family":"Hellbach","sequence":"additional","affiliation":[]},{"given":"Thomas","family":"Villmann","sequence":"additional","affiliation":[]},{"given":"Hans-Joachim","family":"B\u00f6hme","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,5,11]]},"reference":[{"key":"61_CR1","volume-title":"Optimization Algorithms on Matrix Manifolds","author":"PA Absil","year":"2009","unstructured":"Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)"},{"issue":"3","key":"61_CR2","doi-asserted-by":"publisher","first-page":"1261","DOI":"10.1016\/j.eswa.2014.08.049","volume":"42","author":"H Ali","year":"2015","unstructured":"Ali, H., Hariharan, M., Yaacob, S., Adom, A.H.: Facial emotion recognition using empirical mode decomposition. Expert Syst. Appl. 42(3), 1261\u20131277 (2015)","journal-title":"Expert Syst. Appl."},{"issue":"1","key":"61_CR3","doi-asserted-by":"publisher","first-page":"183","DOI":"10.1137\/080716542","volume":"2","author":"A Beck","year":"2009","unstructured":"Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183\u2013202 (2009)","journal-title":"SIAM J. Imaging Sci."},{"issue":"Mar","key":"61_CR4","first-page":"1229","volume":"3","author":"J Bi","year":"2003","unstructured":"Bi, J., Bennett, K., Embrechts, M., Breneman, C., Song, M.: Dimensionality reduction via sparse support vector machines. JMLR 3(Mar), 1229\u20131243 (2003)","journal-title":"JMLR"},{"issue":"2","key":"61_CR5","doi-asserted-by":"publisher","first-page":"92","DOI":"10.1002\/wcs.1378","volume":"7","author":"M Biehl","year":"2016","unstructured":"Biehl, M., Hammer, B., Villmann, T.: Prototype-based models in machine learning. Wiley Interdisc. Rev.: Cogn. Sci. 7(2), 92\u2013111 (2016)","journal-title":"Wiley Interdisc. Rev.: Cogn. Sci."},{"key":"61_CR6","first-page":"1","volume":"3","author":"M Biehl","year":"2009","unstructured":"Biehl, M., Hammer, B., Schleif, F.M., Schneider, P., Villmann, T.: Stationarity of matrix relevance learning vector quantization. Mach. Learn. Rep. 3, 1\u201317 (2009)","journal-title":"Mach. Learn. Rep."},{"key":"61_CR7","volume-title":"Pattern Recognition and Machine Learning (Information Science and Statistics)","author":"CM Bishop","year":"2006","unstructured":"Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006)"},{"key":"61_CR8","unstructured":"Bojer, T., Hammer, B., Schunk, D., Von Toschanowitz, K.: Relevance determination in learning vector quantization. In: Proceedings of ESANN (2001)"},{"issue":"1","key":"61_CR9","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1561\/2200000016","volume":"3","author":"S Boyd","year":"2011","unstructured":"Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1\u2013122 (2011)","journal-title":"Found. Trends Mach. Learn."},{"key":"61_CR10","doi-asserted-by":"crossref","unstructured":"Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W., Weiss, B.: A database of German emotional speech. In: Interspeech, vol. 5, pp. 1517\u20131520 (2005)","DOI":"10.21437\/Interspeech.2005-446"},{"issue":"1","key":"61_CR11","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1016\/j.compeleceng.2013.11.024","volume":"40","author":"G Chandrashekar","year":"2014","unstructured":"Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16\u201328 (2014)","journal-title":"Comput. Electr. Eng."},{"issue":"3","key":"61_CR12","first-page":"613","volume":"41","author":"DL Donoho","year":"1995","unstructured":"Donoho, D.L.: De-noising by soft-thresholding. IEEE TIT 41(3), 613\u2013627 (1995)","journal-title":"IEEE TIT"},{"issue":"6","key":"61_CR13","first-page":"797","volume":"59","author":"DL Donoho","year":"2006","unstructured":"Donoho, D.L.: For most large underdetermined systems of linear equations the minimal $$\\ell $$1-norm solution is also the sparsest solution. CPAMA 59(6), 797\u2013829 (2006)","journal-title":"CPAMA"},{"issue":"2","key":"61_CR14","first-page":"190","volume":"7","author":"F Eyben","year":"2016","unstructured":"Eyben, F., Scherer, K.R., Schuller, B.W., Sundberg, J., Andr\u00e9, E., Busso, C., Devillers, L.Y., Epps, J., Laukka, P., Narayanan, S.S., Truong, K.P.: The Geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing. IEEE TAC 7(2), 190\u2013202 (2016)","journal-title":"IEEE TAC"},{"key":"61_CR15","doi-asserted-by":"crossref","unstructured":"Eyben, F., Weninger, F., Gross, F., Schuller, B.: Recent developments in openSMILE, the munich open-source multimedia feature extractor. In: Proceedings of the 21st ACM, pp. 835\u2013838. ACM (2013)","DOI":"10.1145\/2502081.2502224"},{"issue":"8","key":"61_CR16","doi-asserted-by":"publisher","first-page":"1059","DOI":"10.1016\/S0893-6080(02)00079-5","volume":"15","author":"B Hammer","year":"2002","unstructured":"Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Netw. 15(8), 1059\u20131068 (2002)","journal-title":"Neural Netw."},{"issue":"2","key":"61_CR17","first-page":"415","volume":"13","author":"CW Hsu","year":"2002","unstructured":"Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE TNN 13(2), 415\u2013425 (2002)","journal-title":"IEEE TNN"},{"issue":"2","key":"61_CR18","doi-asserted-by":"publisher","first-page":"79","DOI":"10.2478\/fcds-2014-0006","volume":"39","author":"M Kaden","year":"2014","unstructured":"Kaden, M., Lange, M., Nebel, D., Riedel, M., Geweniger, T., Villmann, T.: Aspects in classification learning - review of recent developments in learning vector quantization. Found. Comput. Decis. Sci. 39(2), 79\u2013105 (2014)","journal-title":"Found. Comput. Decis. Sci."},{"key":"61_CR19","doi-asserted-by":"crossref","unstructured":"Kanth, N.R., Saraswathi, S.: Efficient speech emotion recognition using binary support vector machines multiclass SVM. In: 2015 IEEE ICCIC, December 2015","DOI":"10.1109\/ICCIC.2015.7435793"},{"key":"61_CR20","doi-asserted-by":"crossref","unstructured":"Kim, J., Truong, K.P., Englebienne, G., Evers, V.: Learning spectro-temporal features with 3D CNNs for speech emotion recognition. arXiv preprint arXiv:1708.05071 (2017)","DOI":"10.1109\/ACII.2017.8273628"},{"key":"61_CR21","series-title":"Springer Series in Information Sciences","doi-asserted-by":"publisher","first-page":"175","DOI":"10.1007\/978-3-642-97610-0_6","volume-title":"Self-Organizing Maps","author":"T Kohonen","year":"1995","unstructured":"Kohonen, T.: Learning vector quantization. In: Kohonen, T. (ed.) Self-Organizing Maps. SSINF, vol. 30, pp. 175\u2013189. Springer, Heidelberg (1995). https:\/\/doi.org\/10.1007\/978-3-642-97610-0_6"},{"key":"61_CR22","doi-asserted-by":"crossref","unstructured":"Korkmaz, O.E., Atasoy, A.: Emotion recognition from speech signal using mel-frequency cepstral coefficients. In: 2015 9th ELECO, pp. 1254\u20131257, November 2015","DOI":"10.1109\/ELECO.2015.7394435"},{"key":"61_CR23","doi-asserted-by":"crossref","unstructured":"Lee, J., Tashev, I.: High-level feature representation using recurrent neural network for speech emotion recognition. In: Interspeech 2015. ISCA, September 2015","DOI":"10.21437\/Interspeech.2015-336"},{"issue":"8","key":"61_CR24","doi-asserted-by":"publisher","first-page":"2203","DOI":"10.1109\/TMM.2014.2360798","volume":"16","author":"Q Mao","year":"2014","unstructured":"Mao, Q., Dong, M., Huang, Z., Zhan, Y.: Learning salient features for speech emotion recognition using convolutional neural networks. IEEE Trans. Multimedia 16(8), 2203\u20132213 (2014)","journal-title":"IEEE Trans. Multimedia"},{"issue":"2","key":"61_CR25","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1007\/BF02592948","volume":"39","author":"KG Murty","year":"1987","unstructured":"Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39(2), 117\u2013129 (1987)","journal-title":"Math. Program."},{"key":"61_CR26","unstructured":"Ng, A.Y.: Feature selection, L1 vs. L2 regularization, and rotational invariance. In: Proceedings of the 21th ICML, ICML 2004, p. 78. ACM, New York (2004)"},{"key":"61_CR27","unstructured":"Obozinski, G., Taskar, B., Jordan, M.: Multi-task feature selection. Statistics Department, UC Berkeley, Technical report 2 (2006)"},{"key":"61_CR28","unstructured":"Ofodile, I., Kulkarni, K., Corneanu, C.A., Escalera, S., Baro, X., Hyniewska, S., Allik, J., Anbarjafari, G.: Automatic recognition of deceptive facial expressions of emotion (2017)"},{"issue":"1","key":"61_CR29","first-page":"135","volume":"19","author":"H Palo","year":"2016","unstructured":"Palo, H., Mohanty, M., Chandra, M.: Efficient feature combination techniques for emotional speech classification. IJST 19(1), 135\u2013150 (2016)","journal-title":"IJST"},{"key":"61_CR30","unstructured":"Riedel, M., Rossi, F., K\u00e4stner, M., Villmann, T.: Regularization in relevance learning vector quantization using $$l_1$$-norms. In: Verleysen, M. (ed.) Proceedings of ESANN 2013, pp. 17\u201322 (2013)"},{"key":"61_CR31","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"313","DOI":"10.1007\/978-3-540-87481-2_21","volume-title":"Machine Learning and Knowledge Discovery in Databases","author":"Y Saeys","year":"2008","unstructured":"Saeys, Y., Abeel, T., Van de Peer, Y.: Robust feature selection using ensemble feature selection techniques. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 313\u2013325. Springer, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-87481-2_21"},{"key":"61_CR32","unstructured":"Sato, A., Yamada, K.: Generalized learning vector quantization. In: Advances in Neural Information Processing Systems, pp. 423\u2013429 (1996)"},{"issue":"12","key":"61_CR33","doi-asserted-by":"publisher","first-page":"3532","DOI":"10.1162\/neco.2009.11-08-908","volume":"21","author":"P Schneider","year":"2009","unstructured":"Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Comput. 21(12), 3532\u20133561 (2009)","journal-title":"Neural Comput."},{"issue":"5","key":"61_CR34","doi-asserted-by":"publisher","first-page":"831","DOI":"10.1109\/TNN.2010.2042729","volume":"21","author":"P Schneider","year":"2010","unstructured":"Schneider, P., Bunte, K., Stiekema, H., Hammer, B., Villmann, T., Biehl, M.: Regularization in matrix relevance learning. IEEE Trans. Neural Netw. 21(5), 831\u2013840 (2010)","journal-title":"IEEE Trans. Neural Netw."},{"key":"61_CR35","doi-asserted-by":"crossref","unstructured":"Schuller, B., Steidl, S., Batliner, A.: The INTERSPEECH 2009 emotion challenge. In: 10th Annual Conference of the ISCA (2009)","DOI":"10.21437\/Interspeech.2009-103"},{"key":"61_CR36","doi-asserted-by":"crossref","unstructured":"Schuller, B., Steidl, S., Batliner, A., Schiel, F., Krajewski, J.: The INTERSPEECH 2011 speaker state challenge. In: 12th Annual Conference of the ISCA (2011)","DOI":"10.21437\/Interspeech.2011-801"},{"key":"61_CR37","doi-asserted-by":"crossref","unstructured":"Schuller, B., Steidl, S., Batliner, A., et al.: The INTERSPEECH 2017 computational paralinguistics challenge: addressee, cold and snoring. In: ComParE, Interspeech 2017, pp. 3442\u20133446 (2017)","DOI":"10.21437\/Interspeech.2017-43"},{"key":"61_CR38","doi-asserted-by":"crossref","unstructured":"Sinith, M.S., Aswathi, E., Deepa, T.M., Shameema, C.P., Rajan, S.: Emotion recognition from audio signals using support vector machine. In: 2015 IEEE RAICS, pp. 139\u2013144, December 2015","DOI":"10.1109\/RAICS.2015.7488403"},{"issue":"1","key":"61_CR39","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","volume":"58","author":"Robert Tibshirani","year":"1996","unstructured":"Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B (Methodol.) 267\u2013288 (1996)","journal-title":"Journal of the Royal Statistical Society: Series B (Methodological)"},{"issue":"137","key":"61_CR40","first-page":"1","volume":"17","author":"J Townsend","year":"2016","unstructured":"Townsend, J., Koep, N., Weichwald, S.: Pymanopt: a python toolbox for optimization on manifolds using automatic differentiation. J. Mach. Learn. Res. 17(137), 1\u20135 (2016)","journal-title":"J. Mach. Learn. Res."},{"issue":"1","key":"61_CR41","first-page":"65","volume":"7","author":"T Villmann","year":"2017","unstructured":"Villmann, T., Bohnsack, A., Kaden, M.: Can learning vector quantization be an alternative to SVM and deep learning? JAISCR 7(1), 65\u201381 (2017)","journal-title":"JAISCR"},{"issue":"1","key":"61_CR42","first-page":"69","volume":"6","author":"K Wang","year":"2015","unstructured":"Wang, K., An, N., Li, B.N., Zhang, Y., Li, L.: Speech emotion recognition using fourier parameters. IEEE TAC 6(1), 69\u201375 (2015)","journal-title":"IEEE TAC"},{"key":"61_CR43","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2017\/1945630","volume":"2017","author":"Guihua Wen","year":"2017","unstructured":"Wen, G., Li, H., Huang, J., Li, D., Xun, E.: Random deep belief networks for recognizing emotions from speech signals. Comput. Intell. Neurosci. 2017 (2017)","journal-title":"Computational Intelligence and Neuroscience"},{"issue":"3","key":"61_CR44","doi-asserted-by":"publisher","first-page":"1446","DOI":"10.1016\/j.eswa.2014.08.042","volume":"42","author":"Y Zhang","year":"2015","unstructured":"Zhang, Y., Zhang, L., Hossain, M.A.: Adaptive 3D facial action intensity estimation and emotion recognition. Expert Syst. Appl. 42(3), 1446\u20131464 (2015)","journal-title":"Expert Syst. Appl."},{"key":"61_CR45","unstructured":"Zhu, J., Rosset, S., Tibshirani, R., Hastie, T.J.: 1-norm support vector machines. In: Advances in Neural Information Processing Systems, pp. 49\u201356 (2004)"}],"container-title":["Lecture Notes in Computer Science","Artificial Intelligence and Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-91253-0_61","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,6]],"date-time":"2024-07-06T17:41:19Z","timestamp":1720287679000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-91253-0_61"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783319912523","9783319912530"],"references-count":45,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-91253-0_61","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"11 May 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICAISC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Intelligence and Soft Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Zakopane","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Poland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 June 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 June 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icaisc2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/icaisc.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}