{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T03:33:47Z","timestamp":1725939227702},"publisher-location":"Cham","reference-count":25,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319710075"},{"type":"electronic","value":"9783319710082"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-319-71008-2_25","type":"book-chapter","created":{"date-parts":[[2018,1,10]],"date-time":"2018-01-10T08:03:15Z","timestamp":1515571395000},"page":"329-362","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Takagi\u2013Sugeno-Kang Fuzzy Model Formalization of Eelgrass Leaf Biomass Allometry with Application to the Estimation of Average Biomass of Leaves in Shoots: Comparing the Reproducibility Strength of the Present Fuzzy and Related Crisp Proxies"],"prefix":"10.1007","author":[{"given":"Hector","family":"Echavarria-Heras","sequence":"first","affiliation":[]},{"given":"Cecilia","family":"Leal-Ramirez","sequence":"additional","affiliation":[]},{"given":"Juan Ram\u00f3n","family":"Castro-Rodr\u00edguez","sequence":"additional","affiliation":[]},{"given":"Enrique Villa","family":"Diharce","sequence":"additional","affiliation":[]},{"given":"Oscar","family":"Castillo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,1,11]]},"reference":[{"key":"25_CR1","doi-asserted-by":"crossref","unstructured":"R.M. McCloskey, R.K.F. Unworthy, Decreasing seagrass density negatively influences associated fauna, vol. 3 (PeerJ, 2015), p. e1053","DOI":"10.7717\/peerj.1053"},{"issue":"2","key":"25_CR2","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1007\/s10021-012-9609-0","volume":"16","author":"ML Plummer","year":"2013","unstructured":"M.L. Plummer, C.J. Harvey, L.E. Anderson, A.D. Guerry, M.H. Ruckelshaus, The role of eelgrass in marine community interactions and ecosystem services: results from ecosystem-scale food web models. Ecosystems 16(2), 237\u2013251 (2013)","journal-title":"Ecosystems"},{"key":"25_CR3","unstructured":"E.I. Paling, M. Fonseca, M.M. van Katwijk, M. van Keulen, Seagrass restoration, ed. by M.E. Gerardo, E.W. Perillo, R.C. Donald, M.B. Mark. Coastal Wetlands: An Integrated Ecosystem Approach, 1st edn. (Elsevier Science, 2009) pp. 1\u201362"},{"key":"25_CR4","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.ecoleng.2014.07.020","volume":"71","author":"WT Li","year":"2014","unstructured":"W.T. Li, Y.K. Kim, J.I. Park, X.M. Zhang, G.Y. Du, K.S. Lee, Comparison of seasonal growth responses of Zostera marina transplants to determine the optimal transplant season for habitat restoration. Ecol. Eng. 71, 56\u201365 (2014)","journal-title":"Ecol. Eng."},{"issue":"1\u20132","key":"25_CR5","doi-asserted-by":"crossref","first-page":"73","DOI":"10.3368\/er.29.1-2.73","volume":"29","author":"MS Fonseca","year":"2011","unstructured":"M.S. Fonseca, Addy revisited: what has changed with seagrass restoration in 64\u00a0years? Ecol. Restor. 29(1\u20132), 73\u201381 (2011)","journal-title":"Ecol. Restor."},{"key":"25_CR6","unstructured":"H. Echavarr\u00eda-Heras, C. Leal-Ram\u00edrez, E. Villa-Diharce, E. Montiel-Arzate, On the appropriateness of an allometric proxy for nondestructive estimation of average biomass of leaves in shoots of eelgrass (Zostera marina). Submitted, (2017)"},{"key":"25_CR7","doi-asserted-by":"crossref","unstructured":"H.A. Echavarr\u00eda-Heras, C. Leal-Ram\u00edrez, E. Villa-Diharce, N.R. Cazarez-Castro, The effect of parameter variability in the allometric projection of leaf growth rates for eelgrass (Zostera marina L.) II: the importance of data quality control procedures in bias reduction. Theor. Biol. Med. Model. 12(30), 2015","DOI":"10.1186\/s12976-015-0025-y"},{"issue":"3","key":"25_CR8","doi-asserted-by":"crossref","first-page":"267","DOI":"10.3233\/IFS-1994-2306","volume":"2","author":"SL Chiu","year":"1994","unstructured":"S.L. Chiu, Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2(3), 267\u2013278 (1994)","journal-title":"J. Intell. Fuzzy Syst."},{"key":"25_CR9","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1016\/j.ins.2016.02.045","volume":"351","author":"JR Castro","year":"2016","unstructured":"J.R. Castro, O. Castillo, M.A. Sanchez, O. Mendoza, A. Rodr\u00edguez-D\u00edaz, P. Melin, Method for higher order polynomial sugeno fuzzy inference systems. Inf. Sci. 351, 76\u201389 (2016)","journal-title":"Inf. Sci."},{"issue":"5","key":"25_CR10","doi-asserted-by":"crossref","first-page":"807","DOI":"10.1109\/72.159070","volume":"3","author":"LX Wang","year":"1992","unstructured":"L.X. Wang, J.M. Mendel, Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807\u2013814 (1992)","journal-title":"IEEE Trans. Neural Netw."},{"key":"25_CR11","volume-title":"Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence","author":"JSR Jang","year":"1997","unstructured":"J.S.R. Jang, C.T. Sun, E.S. Mizutani, Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence (Prentice Hall, USA, 1997)"},{"key":"25_CR12","doi-asserted-by":"crossref","first-page":"255","DOI":"10.2307\/2532051","volume":"45","author":"LIK Lin","year":"1989","unstructured":"L.I.K. Lin, A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255\u2013268 (1989)","journal-title":"Biometrics"},{"key":"25_CR13","doi-asserted-by":"crossref","unstructured":"C. Leal-Ram\u00edrez, H.A. Echavarr\u00eda-Heras, O. Castillo, Exploring the suitability of a genetic algorithm as tool for boosting efficiency in monte carlo estimation of leaf area of eelgrass, ed. by P. Melin, O. Castillo, J. Kacprzyk. Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization. Stud. Comput. Intell. vol. 601, (Springer, 2015) pp. 291\u2013303","DOI":"10.1007\/978-3-319-17747-2_23"},{"issue":"4","key":"25_CR14","doi-asserted-by":"crossref","first-page":"764","DOI":"10.1016\/j.jesp.2013.03.013","volume":"49","author":"C Leys","year":"2013","unstructured":"C. Leys, O. Klein, P. Bernard, L. Licata, Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49(4), 764\u2013766 (2013)","journal-title":"J. Exp. Soc. Psychol."},{"key":"25_CR15","doi-asserted-by":"crossref","DOI":"10.1002\/0471725250","volume-title":"Robust statistics","author":"PJ Huber","year":"1981","unstructured":"P.J. Huber, Robust statistics (Wiley, New York, 1981)"},{"key":"25_CR16","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/0165-0114(88)90113-3","volume":"28","author":"M Sugeno","year":"1988","unstructured":"M. Sugeno, G.T. Kang, Structure identification of fuzzy model. Fuzzy Sets Syst. 28, 15\u201333 (1988)","journal-title":"Fuzzy Sets Syst."},{"issue":"13","key":"25_CR17","doi-asserted-by":"crossref","first-page":"2175","DOI":"10.1016\/j.ins.2008.10.016","volume":"179","author":"JR Castro","year":"2009","unstructured":"J.R. Castro, O. Castillo, P. Melin, A. Rodr\u00edguez-D\u00edaz, A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Inf. Sci. 179(13), 2175\u20132193 (2009)","journal-title":"Inf. Sci."},{"issue":"2","key":"25_CR18","doi-asserted-by":"crossref","first-page":"431","DOI":"10.1137\/0111030","volume":"11","author":"DW Marquardt","year":"1963","unstructured":"D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431\u2013441 (1963)","journal-title":"J. Soc. Ind. Appl. Math."},{"key":"25_CR19","unstructured":"M.K. Transtrum, J.P. Sethna, Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization. Cornell University, USA, (2012). doi: arXiv:1201.5885"},{"key":"25_CR20","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1109\/21.256541","volume":"23","author":"S Jang","year":"1993","unstructured":"S. Jang, ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst Man Cybern. 23, 665\u2013685 (1993)","journal-title":"IEEE Trans. Syst Man Cybern."},{"key":"25_CR21","first-page":"168","volume":"249","author":"D Hui","year":"2007","unstructured":"D. Hui, R.B. Jackson, Uncertainty in allometric exponent estimation: a case study in scaling metabolic rate with body mass. J TheorBiol 249, 168\u2013177 (2007)","journal-title":"J TheorBiol"},{"key":"25_CR22","doi-asserted-by":"crossref","unstructured":"C. Leal-Ram\u00edrez, H.A. Echavarr\u00eda-Heras, O. Castillo, E. Montiel-Arzate, On the use of parallel genetic algorithms for improving the efficiency of a monte carlo-digital image based approximation of eelgrass leaf area I: comparing the performances of simple and master-slaves structures, ed. by P. Melin, O. Castillo, J. Kacprzyk. Nature-Inspired Design of Hybrid Intelligent Systems, Volume 667 of the series Studies in Computational Intelligence, pp. 431\u2013455, Springer (2016)","DOI":"10.1007\/978-3-319-47054-2_29"},{"issue":"4","key":"25_CR23","doi-asserted-by":"crossref","first-page":"907","DOI":"10.1080\/14640749108400962","volume":"43","author":"J Miller","year":"1991","unstructured":"J. Miller, Reaction time analysis with outlier exclusion: Bias varies with sample size. Q. J. Exp. Psychol. 43(4), 907\u2013912 (1991)","journal-title":"Q. J. Exp. Psychol."},{"key":"25_CR24","doi-asserted-by":"crossref","first-page":"599","DOI":"10.2307\/2532314","volume":"48","author":"LIK Lin","year":"1992","unstructured":"L.I.K. Lin, Assay validation using the concordance correlation coefficient. Biometrics 48, 599\u2013604 (1992)","journal-title":"Biometrics"},{"key":"25_CR25","unstructured":"G.B. McBride, A proposal for strength-of-agreement criteria for lin\u2019s concordance correlation coefficient. NIWA Client Report: HAM2005-062; National Institute of Water & Atmospheric Research: Hamilton, New Zealand, May 2005. Available online: http:\/\/www.medcalc.org\/download\/pdf\/McBride2005.pdf"}],"container-title":["Studies in Computational Intelligence","Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-71008-2_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,10,25]],"date-time":"2020-10-25T11:57:23Z","timestamp":1603627043000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-71008-2_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783319710075","9783319710082"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-71008-2_25","relation":{},"ISSN":["1860-949X","1860-9503"],"issn-type":[{"type":"print","value":"1860-949X"},{"type":"electronic","value":"1860-9503"}],"subject":[],"published":{"date-parts":[[2018]]}}}