{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T20:56:33Z","timestamp":1725915393145},"publisher-location":"Cham","reference-count":14,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319707716"},{"type":"electronic","value":"9783319707723"}],"license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017]]},"DOI":"10.1007\/978-3-319-70772-3_19","type":"book-chapter","created":{"date-parts":[[2017,11,3]],"date-time":"2017-11-03T02:58:27Z","timestamp":1509677907000},"page":"202-212","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Group Guided Sparse Group Lasso Multi-task Learning for Cognitive Performance Prediction of Alzheimer\u2019s Disease"],"prefix":"10.1007","author":[{"given":"Xiaoli","family":"Liu","sequence":"first","affiliation":[]},{"given":"Peng","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Jinzhu","family":"yang","sequence":"additional","affiliation":[]},{"given":"Dazhe","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Osmar","family":"Zaiane","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,11,4]]},"reference":[{"key":"19_CR1","doi-asserted-by":"crossref","unstructured":"Zhang, D., Shen, D., Alzheimer\u2019s Disease Neuroimaging Initiative, et al.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer\u2019s disease. Neuroimage 59(2), 895\u2013907 (2012)","DOI":"10.1016\/j.neuroimage.2011.09.069"},{"key":"19_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"202","DOI":"10.1007\/978-3-319-02126-3_20","volume-title":"Multimodal Brain Image Analysis","author":"J Yan","year":"2013","unstructured":"Yan, J., Huang, H., Risacher, S.L., Kim, S., Inlow, M., Moore, J.H., Saykin, A.J., Shen, L.: Network-guided sparse learning for predicting cognitive outcomes from MRI measures. In: Shen, L., Liu, T., Yap, P.-T., Huang, H., Shen, D., Westin, C.-F. (eds.) MBIA 2013. LNCS, vol. 8159, pp. 202\u2013210. Springer, Cham (2013). https:\/\/doi.org\/10.1007\/978-3-319-02126-3_20"},{"key":"19_CR3","unstructured":"Wan, J., Zhang, Z., Yan, J., Li, T., Rao, B.D., Fang, S., Kim, S., Risacher, S.L., Saykin, A.J., Shen, L.: Sparse bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in alzheimer\u2019s disease. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 940\u2013947 (2012)"},{"key":"19_CR4","unstructured":"Wang, J., Ye, J.: Two-layer feature reduction for sparse-group lasso via decomposition of convex sets. In: Advances in Neural Information Processing Systems, pp. 2132\u20132140 (2014)"},{"key":"19_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1007\/978-3-319-10581-9_20","volume-title":"Machine Learning in Medical Imaging","author":"X Zhu","year":"2014","unstructured":"Zhu, X., Suk, H.-I., Shen, D.: Sparse discriminative feature selection for multi-class Alzheimer\u2019s disease classification. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 157\u2013164. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10581-9_20"},{"issue":"1","key":"19_CR6","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1111\/j.1467-9868.2005.00532.x","volume":"68","author":"M Yuan","year":"2006","unstructured":"Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc. Ser. B (Statistical Methodology) 68(1), 49\u201367 (2006)","journal-title":"J. Roy. Stat. Soc. Ser. B (Statistical Methodology)"},{"key":"19_CR7","doi-asserted-by":"crossref","unstructured":"Xiang, S., Yuan, L., Fan, W., Wang, Y., Thompson, P.M., Ye, J., Alzheimer\u2019s Disease Neuroimaging Initiative, et al.: Bi-level multi-source learning for heterogeneous block-wise missing data. NeuroImage 102, 192\u2013206 (2014)","DOI":"10.1016\/j.neuroimage.2013.08.015"},{"key":"19_CR8","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1007\/s10994-007-5040-8","volume":"73","author":"A Argyriou","year":"2008","unstructured":"Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach. Learn. 73, 243\u2013272 (2008)","journal-title":"Mach. Learn."},{"key":"19_CR9","unstructured":"Liu, J., Ji, S., Ye, J.: Multi-task feature learning via efficient $$\\ell _{2,1}$$-norm minimization. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 339\u2013348. AUAI Press (2009)"},{"key":"19_CR10","doi-asserted-by":"crossref","unstructured":"Guerrero, R., Ledig, C., Schmidt-Richberg, A., Rueckert, D., Alzheimer\u2019s Disease Neuroimaging Initiative, et al.: Group-constrained manifold learning: application to AD risk assessment. Pattern Recogn. 63, 570\u2013582 (2017)","DOI":"10.1016\/j.patcog.2016.09.023"},{"issue":"3","key":"19_CR11","doi-asserted-by":"publisher","first-page":"607","DOI":"10.1109\/TBME.2015.2466616","volume":"63","author":"X Zhu","year":"2016","unstructured":"Zhu, X., Suk, H.I., Lee, S.W., Shen, D.: Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Trans. Biomed. Eng. 63(3), 607\u2013618 (2016)","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"19_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1561\/2200000016","volume":"3","author":"S Boyd","year":"2011","unstructured":"Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1\u2013122 (2011)","journal-title":"Found. Trends Mach. Learn."},{"issue":"9","key":"19_CR13","doi-asserted-by":"publisher","first-page":"2104","DOI":"10.1109\/TPAMI.2013.17","volume":"35","author":"L Yuan","year":"2013","unstructured":"Yuan, L., Liu, J., Ye, J.: Efficient methods for overlapping group lasso. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2104\u20132116 (2013)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"19_CR14","unstructured":"Zhou, J.: Multi-task learning in crisis event classification. Technical report. http:\/\/www.public.asu.edu\/jzhou29"}],"container-title":["Lecture Notes in Computer Science","Brain Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-70772-3_19","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T18:20:26Z","timestamp":1710267626000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-70772-3_19"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"ISBN":["9783319707716","9783319707723"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-70772-3_19","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2017]]},"assertion":[{"value":"4 November 2017","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Brain Informatics","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Beijing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2017","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 November 2017","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2017","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"brain2017","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/bii.ia.ac.cn\/bi-2017\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}