{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T20:40:39Z","timestamp":1725914439035},"publisher-location":"Cham","reference-count":17,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319700953"},{"type":"electronic","value":"9783319700960"}],"license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017]]},"DOI":"10.1007\/978-3-319-70096-0_14","type":"book-chapter","created":{"date-parts":[[2017,10,24]],"date-time":"2017-10-24T21:33:18Z","timestamp":1508880798000},"page":"126-136","source":"Crossref","is-referenced-by-count":1,"title":["A Parallel Forward-Backward Propagation Learning Scheme for Auto-Encoders"],"prefix":"10.1007","author":[{"given":"Yoshihiro","family":"Ohama","sequence":"first","affiliation":[]},{"given":"Takayoshi","family":"Yoshimura","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,10,26]]},"reference":[{"key":"14_CR1","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521, 436\u2013444 (2015)","journal-title":"Nature"},{"key":"14_CR2","first-page":"237","volume-title":"Field Guide to Dynamical Recurrent Neural Networks","author":"S Hochreiter","year":"2001","unstructured":"Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in reccurent nets: the difficulty of learning long-term dependencies. In: Kremer, C., Kolen, J.F. (eds.) Field Guide to Dynamical Recurrent Neural Networks, pp. 237\u2013244. Wily-IEEE Press, Hoboken (2001)"},{"key":"14_CR3","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","volume":"313","author":"GE Hinton","year":"2006","unstructured":"Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504\u2013507 (2006)","journal-title":"Science"},{"key":"14_CR4","unstructured":"Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway Networks. arXiv:1505.00387 (2015)"},{"key":"14_CR5","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. arXiv:1512.03385 (2015)","DOI":"10.1109\/CVPR.2016.90"},{"key":"14_CR6","unstructured":"Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: 27th International Conference on Machine Learning, pp. 807\u2013814. Omnipress, Madison (2010)"},{"key":"14_CR7","unstructured":"Dugas, C., Bengio, Y., B\u00e9lisle, F., Nadeau, C., Garcia, R.: Incorporating second-order functional knowledge for better option pricing. In: 13th International Conference on Neural Information Processing Systems, pp. 451\u2013457. MIT Press, Denver (2001)"},{"key":"14_CR8","first-page":"257","volume":"12","author":"JC Duchi","year":"2010","unstructured":"Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 257\u2013269 (2010)","journal-title":"J. Mach. Learn. Res."},{"key":"14_CR9","unstructured":"Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv:1412.6980 (2014)"},{"key":"14_CR10","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1038\/337129a0","volume":"337","author":"F Crick","year":"1987","unstructured":"Crick, F.: The recent excitement about neural networks. Nature 337, 129\u2013132 (1987)","journal-title":"Nature"},{"key":"14_CR11","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.tins.2007.12.002","volume":"31","author":"KD Harris","year":"2008","unstructured":"Harris, K.D.: Stability of the fittest: organizing learning through retroaxonal signals. Trends Neurosci. 31, 130\u2013136 (2008)","journal-title":"Trends Neurosci."},{"key":"14_CR12","doi-asserted-by":"crossref","first-page":"2699","DOI":"10.1162\/089976605774320539","volume":"17","author":"J Werfel","year":"2005","unstructured":"Werfel, J., Xie, X., Seung, H.S.: Learning curves for stochastic gradient decent in linear feedforward networks. Neural Comput. 17, 2699\u20132718 (2005)","journal-title":"Neural Comput."},{"key":"14_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"437","DOI":"10.1007\/11550907_69","volume-title":"Artificial Neural Networks: Formal Models and Their Applications \u2013 ICANN 2005","author":"Y Ohama","year":"2005","unstructured":"Ohama, Y., Fukumura, N., Uno, Y.: A Simplified Forward-Propagation Learning Rule Applied to Adaptive Closed-Loop Control. In: Duch, W., Kacprzyk, J., Oja, E., Zadro\u017cny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 437\u2013443. Springer, Heidelberg (2005). doi: 10.1007\/11550907_69"},{"key":"14_CR14","unstructured":"Bengio, Y.: How Auto-encoders could Provide Credit Assignment in Deep Networks via Target Propagation. arXiv:1407.7906 . (2014)"},{"key":"14_CR15","doi-asserted-by":"crossref","first-page":"13276","DOI":"10.1038\/ncomms13276","volume":"7","author":"TP Lillicrap","year":"2016","unstructured":"Lillicrap, T.P., Cownden, D., Tweed, D.B., Akerman, C.J.: Random synaptic feedback weights support error backpropagation for deep learning. Nat. Comm. 7, 13276 (2016)","journal-title":"Nat. Comm."},{"key":"14_CR16","unstructured":"N\u00f8kland, A.: Direct feedback alignment provides learning in deep neural networks. In: 30th International Conference on Neural Information Processing Systems, pp. 1037\u20131045. MIT Press, Denver (2016)"},{"key":"14_CR17","unstructured":"The MNIST database of handwritten digits. http:\/\/yann.lecun.com\/exdb\/mnist"}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-70096-0_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,4]],"date-time":"2019-10-04T23:29:25Z","timestamp":1570231765000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-70096-0_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"ISBN":["9783319700953","9783319700960"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-70096-0_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2017]]}}}