{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T20:33:43Z","timestamp":1725914023069},"publisher-location":"Cham","reference-count":25,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319700922"},{"type":"electronic","value":"9783319700939"}],"license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017]]},"DOI":"10.1007\/978-3-319-70093-9_78","type":"book-chapter","created":{"date-parts":[[2017,10,23]],"date-time":"2017-10-23T22:48:48Z","timestamp":1508798928000},"page":"732-741","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["A Hybrid Model: DGnet-SVM for the Classification of Pulmonary Nodules"],"prefix":"10.1007","author":[{"given":"Yixuan","family":"Xu","sequence":"first","affiliation":[]},{"given":"Guokai","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yuan","family":"Li","sequence":"additional","affiliation":[]},{"given":"Ye","family":"Luo","sequence":"additional","affiliation":[]},{"given":"Jianwei","family":"Lu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,10,24]]},"reference":[{"issue":"22","key":"78_CR1","doi-asserted-by":"publisher","first-page":"2418","DOI":"10.1001\/jama.2012.5521","volume":"307","author":"PB Bach","year":"2012","unstructured":"Bach, P.B., Mirkin, J.N., Oliver, T.K., et al.: Benefits and harms of CT screening for lung cancer: a systematic review. JAMA 307(22), 2418\u20132429 (2012)","journal-title":"JAMA"},{"key":"78_CR2","doi-asserted-by":"crossref","unstructured":"Wu, Y., Wang, N., Zhang, H., et al.: Application of artificial neural networks in the diagnosis of lung cancer by Computed Tomography. In: 6th International Conference on Natural Computation, pp. 147\u2013153. IEEE Press (2010)","DOI":"10.1109\/ICNC.2010.5583316"},{"key":"78_CR3","unstructured":"Devinder, K., Alexander, W., David, A.C.: Lung nodule classification using deep features in CT images. In: 14th Conference on Computer and Robot Vision, pp. 133\u2013138. IEEE Press, Edmonton (2015)"},{"issue":"3","key":"78_CR4","doi-asserted-by":"publisher","first-page":"657","DOI":"10.2214\/ajr.178.3.1780657","volume":"178","author":"Y Matsuki","year":"2002","unstructured":"Matsuki, Y., Nakamura, K., Watanabe, H., et al.: Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis. AJR Am. J. Roentgenol. 178(3), 657\u2013663 (2002)","journal-title":"AJR Am. J. Roentgenol."},{"issue":"C","key":"78_CR5","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1016\/j.engappai.2014.07.007","volume":"36","author":"AM Santos","year":"2014","unstructured":"Santos, A.M., Filho, A., Silva, A.C., et al.: Automatic detection of small lung nodules in 3D CT data using Gaussian mixture models, tsallis entropy and SVM. Eng. Appl. Artif. Intell. 36(C), 27\u201339 (2014)","journal-title":"Eng. Appl. Artif. Intell."},{"key":"78_CR6","doi-asserted-by":"crossref","unstructured":"Sun, S.S., Li, H., Hou, X.R., et al.: Automatic segmentation of pulmonary nodules in CT images. In: 1st International Conference on Bioinformatics and Biomedical Engineering, pp. 790\u2013793. IEEE (2007)","DOI":"10.1109\/ICBBE.2007.206"},{"issue":"8","key":"78_CR7","doi-asserted-by":"publisher","first-page":"790","DOI":"10.1109\/34.400568","volume":"17","author":"Y Cheng","year":"1995","unstructured":"Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE. Trans. Pattern Anal. Mach. Intell. 17(8), 790\u2013799 (1995)","journal-title":"IEEE. Trans. Pattern Anal. Mach. Intell."},{"key":"78_CR8","doi-asserted-by":"crossref","unstructured":"Song, Y., Cai, W., Wang, Y., et al.: Location classification of lung nodules with optimized graph construction. In: 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1439\u20131442. IEEE (2012)","DOI":"10.1109\/ISBI.2012.6235841"},{"issue":"2","key":"78_CR9","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","volume":"60","author":"DG Lowe","year":"2004","unstructured":"Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91\u2013110 (2004)","journal-title":"Int. J. Comput. Vis."},{"issue":"4","key":"78_CR10","doi-asserted-by":"publisher","first-page":"797","DOI":"10.1109\/TMI.2013.2241448","volume":"32","author":"Y Song","year":"2013","unstructured":"Song, Y., Cai, W., Zhou, Y., et al.: Feature-based image patch approximation for lung tissue classification. IEEE. Trans. Med. Imaging 32(4), 797\u2013808 (2013)","journal-title":"IEEE. Trans. Med. Imaging"},{"issue":"3","key":"78_CR11","doi-asserted-by":"publisher","first-page":"346","DOI":"10.1016\/j.cviu.2007.09.014","volume":"110","author":"H Bay","year":"2008","unstructured":"Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. Comput. Vis. Image Undert. 110(3), 346\u2013359 (2008)","journal-title":"Comput. Vis. Image Undert."},{"issue":"7","key":"78_CR12","doi-asserted-by":"publisher","first-page":"971","DOI":"10.1109\/TPAMI.2002.1017623","volume":"24","author":"T Ojala","year":"2002","unstructured":"Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE. Trans. Pattern Anal. Mach. Intell. 24(7), 971\u2013987 (2002)","journal-title":"IEEE. Trans. Pattern Anal. Mach. Intell."},{"key":"78_CR13","doi-asserted-by":"crossref","unstructured":"Dandil, E., Cakiroglu, M., Eksi, Z., et al.: Artificial neural network-based classification system for lung nodules on Computed Tomography scans. In: Soft Computing and Pattern Recognition, pp. 382\u2013386. IEEE Press, Tunis (2014)","DOI":"10.1109\/SOCPAR.2014.7008037"},{"key":"78_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"460","DOI":"10.1007\/978-3-642-21111-9_52","volume-title":"Advances in Neural Networks \u2013 ISNN 2011","author":"H Chen","year":"2011","unstructured":"Chen, H., Wu, W., Xia, H., Du, J., Yang, M., Ma, B.: Classification of pulmonary nodules using neural network ensemble. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) ISNN 2011. LNCS, vol. 6677, pp. 460\u2013466. Springer, Heidelberg (2011). doi:10.1007\/978-3-642-21111-9_52"},{"key":"78_CR15","first-page":"2015","volume":"8","author":"KL Hua","year":"2015","unstructured":"Hua, K.L., Hsu, C.H., Hidayati, S.C., et al.: Computer-aided classification of lung nodules on Computed Tomography images via deep learning technique. Onco Targets Ther. 8, 2015\u20132022 (2015)","journal-title":"Onco Targets Ther."},{"key":"78_CR16","doi-asserted-by":"publisher","first-page":"663","DOI":"10.1016\/j.patcog.2016.05.029","volume":"61","author":"W Shen","year":"2017","unstructured":"Shen, W., Zhou, M., Yang, F., et al.: Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recogn. 61, 663\u2013673 (2017)","journal-title":"Pattern Recogn."},{"issue":"12","key":"78_CR17","first-page":"3371","volume":"11","author":"P Vincent","year":"2010","unstructured":"Vincent, P., Larochelle, H., Lajoie, I., et al.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371\u20133408 (2010)","journal-title":"J. Mach. Learn. Res."},{"key":"78_CR18","doi-asserted-by":"publisher","first-page":"188","DOI":"10.1016\/j.neucom.2016.11.023","volume":"225","author":"P Tang","year":"2016","unstructured":"Tang, P., Wang, H., Kwong, S.: G-MS2F: GoogLeNet based multi-stage feature fusion of deep CNN for scene recognition. Neurocomputing 225, 188\u2013197 (2016)","journal-title":"Neurocomputing"},{"key":"78_CR19","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1\u20139. IEEE Press (2015)","DOI":"10.1109\/CVPR.2015.7298594"},{"issue":"2","key":"78_CR20","doi-asserted-by":"publisher","first-page":"519","DOI":"10.1016\/j.cmpb.2013.04.016","volume":"111","author":"T Sun","year":"2013","unstructured":"Sun, T., Wang, J., Li, X., et al.: Comparative evaluation of support vector machines for computer aided diagnosis of lung cancer in CT based on a multi-dimensional dataset. Comput. Methods Programs Biomed. 111(2), 519\u2013524 (2013)","journal-title":"Comput. Methods Programs Biomed."},{"issue":"2","key":"78_CR21","doi-asserted-by":"publisher","first-page":"915","DOI":"10.1118\/1.3528204","volume":"38","author":"SG Armato","year":"2011","unstructured":"Armato, S.G., McLennan, G., Bidaut, L., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915\u2013931 (2011)","journal-title":"Med. Phys."},{"key":"78_CR22","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097\u20131105. Curran Associates Inc., Doha (2012)"},{"issue":"3","key":"78_CR23","first-page":"273","volume":"20","author":"C Cortes","year":"1995","unstructured":"Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273\u2013297 (1995)","journal-title":"Mach. Learn."},{"key":"78_CR24","doi-asserted-by":"crossref","unstructured":"Yepescalderon, F., Pedregosa, F., Thirion, B., et al.: Automatic pathology classification using a single feature machine learning support-vector machines. In: Proceedings of SPIE Medical Imaging, p. 187. SPIE (2014)","DOI":"10.1117\/12.2043943"},{"key":"78_CR25","volume-title":"Convolutional Networks for Images, Speech, and Time Series: The Handbook of Brain Theory and Neural Networks","author":"Y Lecun","year":"1998","unstructured":"Lecun, Y., Bengio, Y.: Convolutional Networks for Images, Speech, and Time Series: The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (1998)"}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-70093-9_78","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T16:28:07Z","timestamp":1710347287000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-70093-9_78"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"ISBN":["9783319700922","9783319700939"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-70093-9_78","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2017]]},"assertion":[{"value":"24 October 2017","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Guangzhou","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2017","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 November 2017","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2017","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2017","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.iconip2017.org\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}