{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T20:33:41Z","timestamp":1725914021906},"publisher-location":"Cham","reference-count":15,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319700922"},{"type":"electronic","value":"9783319700939"}],"license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017]]},"DOI":"10.1007\/978-3-319-70093-9_77","type":"book-chapter","created":{"date-parts":[[2017,10,23]],"date-time":"2017-10-23T18:48:48Z","timestamp":1508784528000},"page":"723-731","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Computer-Aided Diagnosis in Chest Radiography with Deep Multi-Instance Learning"],"prefix":"10.1007","author":[{"given":"Kang","family":"Qu","sequence":"first","affiliation":[]},{"given":"Xiangfei","family":"Chai","sequence":"additional","affiliation":[]},{"given":"Tianjiao","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Yadong","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Biao","family":"Leng","sequence":"additional","affiliation":[]},{"given":"Zhang","family":"Xiong","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,10,24]]},"reference":[{"issue":"4","key":"77_CR1","doi-asserted-by":"publisher","first-page":"797","DOI":"10.1109\/TMI.2013.2241448","volume":"32","author":"Y Song","year":"2013","unstructured":"Song, Y., Cai, W., Zhou, Y., Feng, D.D.: Feature-based image patch approximation for lung tissue classification. IEEE Trans. Med. Imag. 32(4), 797\u2013808 (2013)","journal-title":"IEEE Trans. Med. Imag."},{"issue":"2","key":"77_CR2","doi-asserted-by":"publisher","first-page":"559","DOI":"10.1109\/TMI.2009.2038575","volume":"29","author":"L Sorensen","year":"2010","unstructured":"Sorensen, L., Shaker, S.B., De Bruijne, M.: Quantitative analysis of pulmonary Emphysema using local binary patterns. IEEE Trans. Med. Imag. 29(2), 559\u2013569 (2010)","journal-title":"IEEE Trans. Med. Imag."},{"key":"77_CR3","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097\u20131105 (2012)"},{"issue":"5","key":"77_CR4","doi-asserted-by":"publisher","first-page":"1170","DOI":"10.1109\/TMI.2015.2482920","volume":"35","author":"H Roth","year":"2015","unstructured":"Roth, H., Lu, L., Liu, J., Yao, J., Seff, A., Cherry, K., Kim, L., Summers, R.: Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans. Med. Imag. 35(5), 1170\u20131181 (2015)","journal-title":"IEEE Trans. Med. Imag."},{"key":"77_CR5","doi-asserted-by":"crossref","unstructured":"Bar, Y., Diamant, I., Wolf, L., Greenspan, H.: Deep learning with non-medical training used for chest pathology identification. In: SPIE Medical Imaging, pp. 94140V. International Society for Optics and Photonics (2015)","DOI":"10.1117\/12.2083124"},{"key":"77_CR6","doi-asserted-by":"crossref","unstructured":"Bar, Y., Diamant, I., Wolf, L., Lieberman, S., Konen, E., Greenspan, H.: Chest pathology detection using deep learning with non-medical training. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 294\u2013297. IEEE (2015)","DOI":"10.1109\/ISBI.2015.7163871"},{"issue":"5","key":"77_CR7","doi-asserted-by":"publisher","first-page":"1313","DOI":"10.1109\/TMI.2016.2528120","volume":"35","author":"S Albarqouni","year":"2016","unstructured":"Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: AggNet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imag. 35(5), 1313\u20131321 (2016)","journal-title":"IEEE Trans. Med. Imag."},{"key":"77_CR8","doi-asserted-by":"crossref","unstructured":"Wu, J., Yu, Y., Huang, C., Yu, K.: Deep multiple instance learning for image classification and auto-annotation, pp. 3460\u20133469 (2015)","DOI":"10.1109\/CVPR.2015.7298968"},{"key":"77_CR9","doi-asserted-by":"crossref","unstructured":"Zeng, T., Ji, S.: Deep convolutional neural networks for multi-instance multi-task learning. In: 2015 IEEE International Conference on Data Mining (ICDM), pp. 579\u2013588. IEEE (2015)","DOI":"10.1109\/ICDM.2015.92"},{"key":"77_CR10","doi-asserted-by":"crossref","unstructured":"Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 FPS via regressing local binary features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1685\u20131692 (2014)","DOI":"10.1109\/CVPR.2014.218"},{"issue":"5","key":"77_CR11","doi-asserted-by":"publisher","first-page":"1285","DOI":"10.1109\/TMI.2016.2528162","volume":"35","author":"HC Shin","year":"2016","unstructured":"Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imag. 35(5), 1285\u20131298 (2016)","journal-title":"IEEE Trans. Med. Imag."},{"key":"77_CR12","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"77_CR13","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)"},{"issue":"1","key":"77_CR14","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1109\/TMI.2014.2350539","volume":"34","author":"J Melendez","year":"2015","unstructured":"Melendez, J., van Ginneken, B., Maduskar, P., Philipsen, R.H., Reither, K., Breuninger, M., Adetifa, I.M., Maane, R., Ayles, H., S\u00e1nchez, C.I.: A novel multiple-instance learning-based approach to computer-aided detection of Tuberculosis on chest X-rays. IEEE Trans. Med. Imag. 34(1), 179\u2013192 (2015)","journal-title":"IEEE Trans. Med. Imag."},{"issue":"1","key":"77_CR15","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1016\/j.media.2015.08.001","volume":"26","author":"F Ciompi","year":"2015","unstructured":"Ciompi, F., de Hoop, B., van Riel, S.J., Chung, K., Scholten, E.T., Oudkerk, M., de Jong, P.A., Prokop, M., van Ginneken, B.: Automatic classification of pulmonary peri-fissural nodules in Computed Tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med. Image Anal. 26(1), 195\u2013202 (2015)","journal-title":"Med. Image Anal."}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-70093-9_77","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T12:27:55Z","timestamp":1710332875000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-70093-9_77"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"ISBN":["9783319700922","9783319700939"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-70093-9_77","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2017]]},"assertion":[{"value":"24 October 2017","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Guangzhou","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2017","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 November 2017","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2017","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2017","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.iconip2017.org\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}