{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T20:33:10Z","timestamp":1725913990646},"publisher-location":"Cham","reference-count":31,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319700922"},{"type":"electronic","value":"9783319700939"}],"license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017]]},"DOI":"10.1007\/978-3-319-70093-9_27","type":"book-chapter","created":{"date-parts":[[2017,10,23]],"date-time":"2017-10-23T22:48:48Z","timestamp":1508798928000},"page":"258-268","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Dynamic Multi Objective Particle Swarm Optimization Based on a New Environment Change Detection Strategy"],"prefix":"10.1007","author":[{"given":"Ahlem","family":"Aboud","sequence":"first","affiliation":[]},{"given":"Raja","family":"Fdhila","sequence":"additional","affiliation":[]},{"given":"Adel M.","family":"Alimi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,10,24]]},"reference":[{"issue":"5","key":"27_CR1","doi-asserted-by":"publisher","first-page":"361","DOI":"10.1016\/j.patrec.2009.10.015","volume":"31","author":"S Ben Moussa","year":"2010","unstructured":"Ben Moussa, S., Zahour, A., Benabdelhafid, A., Alimi, M.A.: New features using fractal multi-dimensions for generalized Arabic font recognition. Pattern Recogn. Lett. 31(5), 361\u2013371 (2010)","journal-title":"Pattern Recogn. Lett."},{"key":"27_CR2","unstructured":"Bezine, H., Alimi, M.A., Derbel, N.: Handwriting trajectory movements controlled by a b\u00eata-elliptic model. In: 7th IEEE International Conference on Document Analysis and Recognition, pp. 1228\u20131232. IEEE, Edinburgh, UK (2003)"},{"issue":"5","key":"27_CR3","doi-asserted-by":"publisher","first-page":"385","DOI":"10.1080\/03772063.2002.11416300","volume":"48","author":"MA Alimi","year":"2002","unstructured":"Alimi, M.A.: Evolutionary computation for the recognition of on-line cursive handwriting. IETE J. Res. 48(5), 385\u2013396 (2002)","journal-title":"IETE J. Res."},{"key":"27_CR4","doi-asserted-by":"crossref","unstructured":"Boubaker, H., Kherallah, M., Alimi, M.A.: New algorithm of straight or curved baseline detection for short Arabic handwritten writing. In: 10th International Conference on Document Analysis and Recognition, pp. 778\u2013782. IEEE, Barcelona, Spain (2009)","DOI":"10.1109\/ICDAR.2009.265"},{"issue":"2","key":"27_CR5","doi-asserted-by":"publisher","first-page":"209","DOI":"10.1016\/j.patrec.2012.09.012","volume":"34","author":"F Slimane","year":"2013","unstructured":"Slimane, F., Kanoun, S., Hennebert, J., Alimi, M.A., Ingold, R.: A study on font-family and font-size recognition applied to Arabic word images at ultra-low resolution. Pattern Recogn. Lett. 34(2), 209\u2013218 (2013)","journal-title":"Pattern Recogn. Lett."},{"key":"27_CR6","doi-asserted-by":"crossref","unstructured":"Elbaati, A., Boubaker, H., Kherallah, M., Alimi, M.A., Ennaji, A., Abed, H.E.: Arabic handwriting recognition using restored stroke chronology. In: 10th International Conference on Document Analysis and Recognition, pp. 411\u2013415. IEEE, Barcelona, Spain (2009)","DOI":"10.1109\/ICDAR.2009.262"},{"issue":"1","key":"27_CR7","doi-asserted-by":"crossref","first-page":"37","DOI":"10.3233\/IFS-2012-0527","volume":"24","author":"L Baccour","year":"2013","unstructured":"Baccour, L., Alimi, M.A., John, R.I.: Similarity measures for intuitionistic fuzzy sets: state of the art. J. Intell. Fuzzy Syst. 24(1), 37\u201349 (2013)","journal-title":"J. Intell. Fuzzy Syst."},{"key":"27_CR8","doi-asserted-by":"crossref","unstructured":"Fdhila, R., Hamdani, T.M., Alimi, M.A.: Distributed MOPSO with a new population subdivision technique for the feature selection. In: The 5th International Symposium Computational Intelligence and Intelligent Informatics, pp. 81\u201386. IEEE, Floriana, Malta (2011)","DOI":"10.1109\/ISCIII.2011.6069747"},{"key":"27_CR9","doi-asserted-by":"crossref","unstructured":"Fdhila, R., Hamdani, T.M., Alimi, M.A.: A multi objective particles swarm optimization algorithm for solving the routing pico-satellites problem. In: Systems, Man, and Cybernetics, pp. 1402\u20131407. IEEE, Seoul, South Korea (2012)","DOI":"10.1109\/ICSMC.2012.6377930"},{"key":"27_CR10","doi-asserted-by":"crossref","unstructured":"Fdhila, R., Walha, C., Hamdani, T.M., Alimi, M.A.: Hierarchical design for distributed MOPSO using sub-swarms based on a population pareto fronts analysis for the grasp planning problem. In: The 13th International Conference on Hybrid Intelligent Systems, pp. 203\u2013208. IEEE, Gammarth, Tunisia (2013)","DOI":"10.1109\/HIS.2013.6920483"},{"key":"27_CR11","doi-asserted-by":"crossref","unstructured":"Chouikhi, N., Fdhila, R., Ammar, B., Rokbani, N., Alimi, M.A.: Single-and multi-objective particle swarm optimization of reservoir structure in echo state network. In: The International Joint Conference on Neural Networks, pp. 440\u2013447. IEEE, Vancouver, BC, Canada (2016)","DOI":"10.1109\/IJCNN.2016.7727232"},{"key":"27_CR12","unstructured":"Eberhart, R., Kennedy, J.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, pp. 1942\u20131948. IEEE Service Center, Piscataway, New Jersey (1995)"},{"key":"27_CR13","unstructured":"Fdhila, R., Hamdani. T., Alimi. M.A.: A new distributed approach for MOPSO based on population Pareto fronts analysis and Dynamic. In: Systems Man and Cybernetics (SMC), pp. 947\u2013954. IEEE, Istanbul (2010)"},{"key":"27_CR14","doi-asserted-by":"crossref","unstructured":"Fdhila, R., Hamdani, T.M., Alimi, M.A.: A new hierarchical approach for MOPSO based on dynamic subdivision of the population using Pareto fronts. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 947\u2013954. IEEE, Istanbul, Turkey (2010)","DOI":"10.1109\/ICSMC.2010.5641884"},{"key":"27_CR15","unstructured":"Fdhila, R., Hamdani, T.M., Alimi, M.A.: Population-based distribution of MOPSO with continuous flying pareto fronts particles. J. Inf. Process. Syst. (2016, accepted paper)"},{"issue":"6","key":"27_CR16","first-page":"385","volume":"11","author":"R Fdhila","year":"2016","unstructured":"Fdhila, R., Ouarda, W., Alimi, M.A., Abraham, A.: A new scheme for face recognition system using a new 2-level parallelized hierarchical multi objective particle swarm optimization algorithm. J. Inf. Assur. Secur. 11(6), 385\u2013394 (2016)","journal-title":"J. Inf. Assur. Secur."},{"key":"27_CR17","series-title":"SCI","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1007\/978-3-642-30665-5_8","volume-title":"Metaheuristics for Dynamic Optimization","author":"M Helbig","year":"2013","unstructured":"Helbig, M., Engelbrecht, A.P.: Dynamic multi-objective optimization using PSO. In: Alba, E., Nakib, A., Siarry, P. (eds.) Metaheuristics for Dynamic Optimization. SCI, vol. 433, pp. 147\u2013188. Springer, Heidelberg (2013). doi:10.1007\/978-3-642-30665-5_8"},{"key":"27_CR18","doi-asserted-by":"crossref","unstructured":"Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test cases, approximations, and applications. In: Transactions on Evolutionary Computation, pp. 425\u2013442. IEEE, USA (2004)","DOI":"10.1109\/TEVC.2004.831456"},{"key":"27_CR19","doi-asserted-by":"crossref","unstructured":"Fdhila, R., Hamdani, T.M., Alimi, M.A.: Optimization algorithms, benchmarks and performance measures: from static to dynamic environment. In: The 15th International Conference on Intelligent Systems Design and Applications, pp. 597\u2013603. IEEE, Marrakech, Morocco (2015)","DOI":"10.1109\/ISDA.2015.7489185"},{"key":"27_CR20","doi-asserted-by":"crossref","unstructured":"Aboud, A., Fdhila, R., Alimi, M.A.: MOPSO for dynamic feature selection problem based big data fusion. In: the IEEE International Conference on Systems, Man, and Cybernetics, pp. 003918\u2013003923. IEEE, Budapest, Hungary (2016)","DOI":"10.1109\/SMC.2016.7844846"},{"key":"27_CR21","doi-asserted-by":"crossref","unstructured":"Fdhila, R., Elloumi, W., Hamdani, T.M.: Distributed MOPSO with dynamic Pareto front driven population analysis for TSP problem. In: the 6th International Conference Soft Computing and Pattern Recognition, pp. 294\u2013299. IEEE, Tunis, Tunisia (2014)","DOI":"10.1109\/SOCPAR.2014.7008022"},{"key":"27_CR22","unstructured":"Hu, X., Eberhart, R.: Tracking dynamic systems with PSO: where\u2019s the cheese? In: Proceedings of the workshop on particle swarm optimization. Purdue School of Engineering and Technology. IEEE, Indianapolis (2001)"},{"key":"27_CR23","doi-asserted-by":"crossref","unstructured":"Du, W., Li, B.: Multi-strategy ensemble particle swarm optimization for dynamic optimization. In: Information Sciences, pp. 3096\u20133109. Elsevier, Huangshan Road, Hefei, Anhui, China (2008)","DOI":"10.1016\/j.ins.2008.01.020"},{"key":"27_CR24","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4471-0519-0_24","volume-title":"Evolutionary Design and Manufacture","author":"J Branke","year":"2000","unstructured":"Branke, J., Kaussler, T., Smidt, C., Schmeck, H.: A multi-population approach to dynamic optimization problems. In: Parmee, I.C. (ed.) Evolutionary Design and Manufacture. Springer, London (2000). doi:10.1007\/978-1-4471-0519-0_24"},{"key":"27_CR25","doi-asserted-by":"crossref","unstructured":"Dhahri, H., Alimi, M.A.: The modified differential evolution and the RBF (MDE-RBF) neural network for time series prediction. In: IEEE International Conference on Neural Networks - Conference Proceedings, pp. 2938\u20132943. IEEE, Vancouver, BC, Canada (2006)","DOI":"10.1109\/IJCNN.2006.247227"},{"key":"27_CR26","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1016\/j.neucom.2013.01.024","volume":"117","author":"S Bouaziz","year":"2013","unstructured":"Bouaziz, S., Dhahri, H., Alimi, M.A., Abraham, A.: A hybrid learning algorithm for evolving flexible beta basis function neural tree model. Neurocomputing 117, 107\u2013117 (2013)","journal-title":"Neurocomputing"},{"key":"27_CR27","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"803","DOI":"10.1007\/978-3-540-70928-2_60","volume-title":"Evolutionary Multi-Criterion Optimization","author":"K Deb","year":"2007","unstructured":"Deb, K., Rao, N.U.B., Karthik, S.: Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 803\u2013817. Springer, Heidelberg (2007). doi:10.1007\/978-3-540-70928-2_60"},{"key":"27_CR28","doi-asserted-by":"crossref","unstructured":"Chen, H., Li, M., Chen, X.: Using diversity as an additional-objective in dynamic multiobjective optimization algorithms. In: Second International Symposium on Electronic Commerce and Security, pp. 484\u2013487. IEEE, Nanchang City, China (2009)","DOI":"10.1109\/ISECS.2009.42"},{"key":"27_CR29","doi-asserted-by":"crossref","unstructured":"Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1201\u20131208. ACM, Seattle, Washington, USA (2006)","DOI":"10.1145\/1143997.1144187"},{"key":"27_CR30","unstructured":"Hu, X., Eberhart, R.: Adaptive particle swarm optimisation: detection and response to dynamic systems. In: IEEE Congress on Evolutionary Computation, pp. 1666\u20131670. IEEE, Honolulu, HI, USA, USA (2002)"},{"issue":"1","key":"27_CR31","doi-asserted-by":"publisher","first-page":"40","DOI":"10.1109\/TCYB.2013.2245892","volume":"44","author":"A Zhou","year":"2014","unstructured":"Zhou, A., Jin, Y., Zhang, Q.: A population prediction strategy for evolutionary dynamic multiobjective optimization. Trans. Cybern. 44(1), 40\u201353 (2014)","journal-title":"Trans. Cybern."}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-70093-9_27","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T16:22:56Z","timestamp":1710346976000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-70093-9_27"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"ISBN":["9783319700922","9783319700939"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-70093-9_27","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2017]]},"assertion":[{"value":"24 October 2017","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Guangzhou","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2017","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 November 2017","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2017","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2017","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.iconip2017.org\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}