{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T05:30:45Z","timestamp":1743053445204,"version":"3.40.3"},"publisher-location":"Cham","reference-count":33,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319689340"},{"type":"electronic","value":"9783319689357"}],"license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017]]},"DOI":"10.1007\/978-3-319-68935-7_1","type":"book-chapter","created":{"date-parts":[[2017,10,5]],"date-time":"2017-10-05T03:53:18Z","timestamp":1507175598000},"page":"1-8","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":29,"title":["Learning Convolutional Ranking-Score Function by Query Preference Regularization"],"prefix":"10.1007","author":[{"given":"Guohui","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Gaoyuan","family":"Liang","sequence":"additional","affiliation":[]},{"given":"Weizhi","family":"Li","sequence":"additional","affiliation":[]},{"given":"Jian","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Jingbin","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yanyan","family":"Geng","sequence":"additional","affiliation":[]},{"given":"Jing-Yan","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,10,6]]},"reference":[{"key":"1_CR1","doi-asserted-by":"crossref","unstructured":"Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 89\u201396. ACM (2005)","DOI":"10.1145\/1102351.1102363"},{"key":"1_CR2","doi-asserted-by":"crossref","unstructured":"Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: Proceedings of the 24th International Conference on Machine Learning, pp. 129\u2013136. ACM (2007)","DOI":"10.1145\/1273496.1273513"},{"issue":"5s","key":"1_CR3","first-page":"83","volume":"12","author":"W Chen","year":"2016","unstructured":"Chen, W., Ma, L., Shen, C.C.: Congestion-aware MAC layer adaptation to improve video telephony over Wi-Fi. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 12(5s), 83 (2016)","journal-title":"ACM Trans. Multimedia Comput. Commun. Appl. (TOMM)"},{"key":"1_CR4","doi-asserted-by":"crossref","unstructured":"Chen, W., Ma, L., Sternberg, G., Reznik, Y.A., Shen, C.C.: User-aware dash over Wi-Fi. In: 2015 International Conference on Computing, Networking and Communications (ICNC), pp. 749\u2013753. IEEE (2015)","DOI":"10.1109\/ICCNC.2015.7069440"},{"key":"1_CR5","doi-asserted-by":"publisher","first-page":"255","DOI":"10.1016\/j.patcog.2016.11.015","volume":"64","author":"Y Duan","year":"2017","unstructured":"Duan, Y., Liu, F., Jiao, L., Zhao, P., Zhang, L.: Sar image segmentation based on convolutional-wavelet neural network and markov random field. Patt. Recogn. 64, 255\u2013267 (2017)","journal-title":"Patt. Recogn."},{"key":"1_CR6","doi-asserted-by":"crossref","unstructured":"Fan, J., Liang, R.Z.: Stochastic learning of multi-instance dictionary for earth mover\u2019s distance-based histogram comparison. Neural Comput. Appl. 1\u201311 (2016)","DOI":"10.1007\/s00521-016-2603-2"},{"key":"1_CR7","series-title":"Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering","doi-asserted-by":"publisher","first-page":"88","DOI":"10.1007\/978-3-642-33368-2_8","volume-title":"Green Communications and Networking","author":"J Fang","year":"2012","unstructured":"Fang, J., Lim, A., Yang, Q.: TOA ranging using real time application interface (RTAI) in IEEE 802.11 networks. In: Rodrigues, J.J.P.C., Zhou, L., Chen, M., Kailas, A. (eds.) GreeNets 2011. LNICSSITE, vol. 51, pp. 88\u201398. Springer, Heidelberg (2012). doi:10.1007\/978-3-642-33368-2_8"},{"issue":"4","key":"1_CR8","doi-asserted-by":"publisher","first-page":"594","DOI":"10.1109\/TPAMI.2006.79","volume":"28","author":"L Fei-Fei","year":"2006","unstructured":"Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Patt. Anal. Mach. Intell. 28(4), 594\u2013611 (2006)","journal-title":"IEEE Trans. Patt. Anal. Mach. Intell."},{"key":"1_CR9","unstructured":"Geng, Y., Liang, R.Z., Li, W., Wang, J., Liang, G., Xu, C., Wang, J.Y.: Learning convolutional neural network to maximize pos@top performance measure. In: ESANN (2017)"},{"key":"1_CR10","doi-asserted-by":"crossref","unstructured":"Geng, Y., Zhang, G., Li, W., Gu, Y., Liang, G., Wang, J., Wu, Y., Patil, N., Wang, J.Y.: A novel image tag completion method based on convolutional neural network. In: International Conference on Artificial Neural Networks. Springer (2017)","DOI":"10.1007\/978-3-319-68612-7_61"},{"key":"1_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"304","DOI":"10.1007\/978-3-540-88682-2_24","volume-title":"Computer Vision \u2013 ECCV 2008","author":"H Jegou","year":"2008","unstructured":"Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 304\u2013317. Springer, Heidelberg (2008). doi:10.1007\/978-3-540-88682-2_24"},{"issue":"7","key":"1_CR12","doi-asserted-by":"publisher","first-page":"1478","DOI":"10.1016\/j.burns.2015.05.009","volume":"41","author":"DR King","year":"2015","unstructured":"King, D.R., Li, W., Squiers, J.J., Mohan, R., Sellke, E., Mo, W., Zhang, X., Fan, W., DiMaio, J.M., Thatcher, J.E.: Surgical wound debridement sequentially characterized in a porcine burn model with multispectral imaging. Burns 41(7), 1478\u20131487 (2015)","journal-title":"Burns"},{"key":"1_CR13","doi-asserted-by":"crossref","unstructured":"Li, L., Yao, Y., Tang, J., Fan, W., Tong, H.: QUINT: on query-specific optimal networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 985\u2013994. ACM (2016)","DOI":"10.1145\/2939672.2939768"},{"key":"1_CR14","doi-asserted-by":"crossref","unstructured":"Li, Q., Zhou, X., Gu, A., Li, Z., Liang, R.Z.: Nuclear norm regularized convolutional max pos@top machine. Neural Comput. Appl. 1\u201310 (2016)","DOI":"10.1007\/s00521-016-2680-2"},{"key":"1_CR15","doi-asserted-by":"crossref","unstructured":"Li, W., Mo, W., Zhang, X., Lu, Y., Squiers, J.J., Sellke, E.W., Fan, W., DiMaio, J.M., Thatcher, J.E.: Burn injury diagnostic imaging device\u2019s accuracy improved by outlier detection and removal. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI, vol. 9472 (2015)","DOI":"10.1117\/12.2177433"},{"issue":"12","key":"1_CR16","doi-asserted-by":"publisher","first-page":"121305","DOI":"10.1117\/1.JBO.20.12.121305","volume":"20","author":"W Li","year":"2015","unstructured":"Li, W., Mo, W., Zhang, X., Squiers, J.J., Lu, Y., Sellke, E.W., Fan, W., DiMaio, J.M., Thatcher, J.E.: Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging. J. Biomed. Opt. 20(12), 121305 (2015)","journal-title":"J. Biomed. Opt."},{"key":"1_CR17","unstructured":"Liang, R.Z., Shi, L., Wang, H., Meng, J., Wang, J.J.Y., Sun, Q., Gu, Y.: Optimizing top precision performance measure of content-based image retrieval by learning similarity function. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE (2016)"},{"key":"1_CR18","doi-asserted-by":"crossref","unstructured":"Liang, R.Z., Xie, W., Li, W., Wang, H., Wang, J.J.Y., Taylor, L.: A novel transfer learning method based on common space mapping and weighted domain matching. In: 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 299\u2013303. IEEE (2016)","DOI":"10.1109\/ICTAI.2016.0053"},{"key":"1_CR19","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1016\/j.inffus.2016.12.001","volume":"36","author":"Y Liu","year":"2017","unstructured":"Liu, Y., Chen, X., Peng, H., Wang, Z.: Multi-focus image fusion with a deep convolutional neural network. Inf. Fusion 36, 191\u2013207 (2017)","journal-title":"Inf. Fusion"},{"key":"1_CR20","doi-asserted-by":"crossref","unstructured":"Ma, L., Chen, W., Veer, D., Sternberg, G., Liu, W., Reznik, Y.: Early packet loss feedback for WebRTC-based mobile video telephony over Wi-Fi. In: 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1\u20136. IEEE (2015)","DOI":"10.1109\/GLOCOM.2015.7417847"},{"key":"1_CR21","doi-asserted-by":"publisher","first-page":"148","DOI":"10.1016\/j.jbi.2017.01.002","volume":"66","author":"L Ma","year":"2017","unstructured":"Ma, L., Liu, X., Gao, Y., Zhao, Y., Zhao, X., Zhou, C.: A new method of content based medical image retrieval and its applications to CT imaging sign retrieval. J. Biomed. Inform. 66, 148\u2013158 (2017)","journal-title":"J. Biomed. Inform."},{"key":"1_CR22","doi-asserted-by":"crossref","unstructured":"Ma, L., Veer, D., Chen, W., Sternberg, G., Reznik, Y.A., Neff, R.A.: User adaptive transcoding for video teleconferencing. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 2209\u20132213. IEEE (2015)","DOI":"10.1109\/ICIP.2015.7351193"},{"key":"1_CR23","doi-asserted-by":"crossref","unstructured":"Mo, W., Mohan, R., Li, W., Zhang, X., Sellke, E.W., Fan, W., DiMaio, J.M., Thatcher, J.E.: The importance of illumination in a non-contact photoplethysmography imaging system for burn wound assessment. In: Photonic Therapeutics and Diagnostics XI, vol. 9303 (2015)","DOI":"10.1117\/12.2080699"},{"key":"1_CR24","doi-asserted-by":"publisher","unstructured":"Ren, X., Chen, K., Yang, X., Zhou, Y., He, J., Sun, J.: A novel scene text detection algorithm based on convolutional neural network. In: VCIpp, 2016\u201330th Anniversary of Visual Communication and Image Processing, p. 7805444 (2017). doi:10.1109\/VCIP.2016.7805444","DOI":"10.1109\/VCIP.2016.7805444"},{"key":"1_CR25","doi-asserted-by":"crossref","unstructured":"Tian, Q., Li, B.: Weakly hierarchical lasso based learning to rank in best answer prediction. In: Proceedings of the 2016 IEEE\/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016, pp. 307\u2013314 (2016)","DOI":"10.1109\/ASONAM.2016.7752250"},{"key":"1_CR26","doi-asserted-by":"crossref","unstructured":"Wang, H., Wang, J.: An effective image representation method using kernel classification. In: 2014 IEEE 26th International Conference on Tools with Artificial Intelligence (ICTAI 2014), pp. 853\u2013858 (2014)","DOI":"10.1109\/ICTAI.2014.131"},{"key":"1_CR27","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1016\/j.ins.2016.12.030","volume":"387","author":"Z Xia","year":"2017","unstructured":"Xia, Z., Xiong, N., Vasilakos, A., Sun, X.: EPCBIR: an efficient and privacy-preserving content-based image retrieval scheme in cloud computing. Inf. Sci. 387, 195\u2013204 (2017)","journal-title":"Inf. Sci."},{"key":"1_CR28","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1016\/j.neunet.2016.12.008","volume":"88","author":"J Xu","year":"2017","unstructured":"Xu, J., Xu, B., Wang, P., Zheng, S., Tian, G., Zhao, J., Xu, B.: Self-taught convolutional neural networks for short text clustering. Neural Netw. 88, 22\u201331 (2017)","journal-title":"Neural Netw."},{"key":"1_CR29","unstructured":"Yang, Q., Lim, A., Li, S., Fang, J., Agrawal, P.: ACAR: adaptive connectivity aware routing protocol for vehicular ad hoc networks. In: Proceedings of 17th International Conference on Computer Communications and Networks, 2008, ICCCN 2008, pp. 1\u20136. IEEE (2008)"},{"issue":"1","key":"1_CR30","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1007\/s11036-009-0169-2","volume":"15","author":"Q Yang","year":"2010","unstructured":"Yang, Q., Lim, A., Li, S., Fang, J., Agrawal, P.: ACAR: adaptive connectivity aware routing for vehicular ad hoc networks in city scenarios. Mob. Netw. Appl. 15(1), 36\u201360 (2010)","journal-title":"Mob. Netw. Appl."},{"issue":"4","key":"1_CR31","doi-asserted-by":"publisher","first-page":"723","DOI":"10.1109\/TPAMI.2011.170","volume":"34","author":"Y Yang","year":"2012","unstructured":"Yang, Y., Nie, F., Xu, D., Luo, J., Zhuang, Y., Pan, Y.: A multimedia retrieval framework based on semi-supervised ranking and relevance feedback. IEEE Trans. Patt. Anal. Mach. Intell. 34(4), 723\u2013742 (2012)","journal-title":"IEEE Trans. Patt. Anal. Mach. Intell."},{"key":"1_CR32","unstructured":"Zhou, D., Weston, J., Gretton, A., Bousquet, O., Sch\u00f6lkopf, B.: Ranking on data manifolds. In: NIPS, vol. 3 (2003)"},{"issue":"2","key":"1_CR33","doi-asserted-by":"publisher","first-page":"472","DOI":"10.1109\/TKDE.2016.2562624","volume":"29","author":"L Zhu","year":"2017","unstructured":"Zhu, L., Shen, J., Xie, L., Cheng, Z.: Unsupervised visual hashing with semantic assistant for content-based image retrieval. IEEE Trans. Knowl. Data Eng. 29(2), 472\u2013486 (2017)","journal-title":"IEEE Trans. Knowl. Data Eng."}],"container-title":["Lecture Notes in Computer Science","Intelligent Data Engineering and Automated Learning \u2013 IDEAL 2017"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-68935-7_1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T18:25:20Z","timestamp":1710354320000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-68935-7_1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"ISBN":["9783319689340","9783319689357"],"references-count":33,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-68935-7_1","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2017]]},"assertion":[{"value":"6 October 2017","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IDEAL","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Data Engineering and Automated Learning","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Guilin","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2017","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 October 2017","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 November 2017","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ideal2017","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/ideal2017.guet.edu.cn\/ideal\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}