{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T20:33:12Z","timestamp":1725913992799},"publisher-location":"Cham","reference-count":10,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319686110"},{"type":"electronic","value":"9783319686127"}],"license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017]]},"DOI":"10.1007\/978-3-319-68612-7_55","type":"book-chapter","created":{"date-parts":[[2017,10,24]],"date-time":"2017-10-24T07:31:17Z","timestamp":1508830277000},"page":"486-494","source":"Crossref","is-referenced-by-count":6,"title":["Solar Power Forecasting Using Pattern Sequences"],"prefix":"10.1007","author":[{"given":"Zheng","family":"Wang","sequence":"first","affiliation":[]},{"given":"Irena","family":"Koprinska","sequence":"additional","affiliation":[]},{"given":"Mashud","family":"Rana","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,10,25]]},"reference":[{"key":"55_CR1","unstructured":"Climate Commission: The critical decade: Australia\u2019s future - solar energy (2013). \nhttp:\/\/www.climatecouncil.org.au\/uploads\/497bcd1f058be45028e3df9d020ed561.pdf"},{"key":"55_CR2","doi-asserted-by":"crossref","first-page":"2017","DOI":"10.1016\/j.solener.2012.04.004","volume":"86","author":"HTC Pedro","year":"2012","unstructured":"Pedro, H.T.C., Coimbra, C.F.M.: Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol. Energy 86, 2017\u20132028 (2012)","journal-title":"Sol. Energy"},{"key":"55_CR3","doi-asserted-by":"crossref","first-page":"1772","DOI":"10.1016\/j.solener.2009.05.016","volume":"83","author":"P Bacher","year":"2009","unstructured":"Bacher, P., Madsen, H., Nielsen, H.A.: Online short-term solar power forecasting. Sol. Energy 83, 1772\u20131783 (2009)","journal-title":"Sol. Energy"},{"key":"55_CR4","doi-asserted-by":"crossref","unstructured":"Rana, M., Koprinska, I., Agelidis, V.G.: Forecasting solar power generated by grid connected PV systems using ensembles of neural networks. In: IJCNN (2015)","DOI":"10.1109\/IJCNN.2015.7280574"},{"key":"55_CR5","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.solener.2014.11.017","volume":"112","author":"Y Chu","year":"2015","unstructured":"Chu, Y., Urquhart, B., Gohari, S.M.I., Pedro, H.T.C., Kleissl, J., Coimbra, C.F.M.: Short-term reforecasting of power output from a 48\u00a0MWe solar PV plant. Sol. Energy 112, 68\u201377 (2015)","journal-title":"Sol. Energy"},{"key":"55_CR6","doi-asserted-by":"crossref","unstructured":"Wang, Z., Koprinska, I.: Solar power prediction with data source weighted nearest neighbors. In: International Joint Conference on Neural Networks (IJCNN) (2017)","DOI":"10.1109\/IJCNN.2017.7966018"},{"key":"55_CR7","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1016\/j.solener.2015.08.018","volume":"122","author":"M Rana","year":"2015","unstructured":"Rana, M., Koprinska, I., Agelidis, V.G.: 2D-interval forecasts for solar power production. Sol. Energy 122, 191\u2013203 (2015)","journal-title":"Sol. Energy"},{"key":"55_CR8","doi-asserted-by":"crossref","first-page":"1064","DOI":"10.1109\/TIA.2012.2190816","volume":"48","author":"J Shi","year":"2012","unstructured":"Shi, J., Lee, W.-J., Lin, Y., Yang, Y., Wang, P.: Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE Trans. Ind. Appl. 48, 1064\u20131069 (2012)","journal-title":"IEEE Trans. Ind. Appl."},{"key":"55_CR9","doi-asserted-by":"crossref","first-page":"1230","DOI":"10.1109\/TKDE.2010.227","volume":"23","author":"F Mart\u00ednez-\u00c1lvarez","year":"2011","unstructured":"Mart\u00ednez-\u00c1lvarez, F., Troncoso, A., Riquelme, J.C., Aguilar-Ruiz, J.S.: Energy time series forecasting based on pattern sequence similarity. IEEE Trans. Knowl. Data Eng. 23, 1230\u20131243 (2011)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"55_CR10","doi-asserted-by":"crossref","unstructured":"Koprinska, I., Rana, M., Troncoso, A., Mart\u00ednez-\u00c1lvarez, F.: Combining pattern sequence similarity with neural networks for forecasting electricity demand time series. In: International Joint Conference on Neural Networks (IJCNN) (2013)","DOI":"10.1109\/IJCNN.2013.6706838"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2017"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-68612-7_55","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2017,10,24]],"date-time":"2017-10-24T07:45:00Z","timestamp":1508831100000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-68612-7_55"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"ISBN":["9783319686110","9783319686127"],"references-count":10,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-68612-7_55","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2017]]}}}