{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T19:12:20Z","timestamp":1725909140547},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319671796"},{"type":"electronic","value":"9783319671802"}],"license":[{"start":{"date-parts":[[2017,8,23]],"date-time":"2017-08-23T00:00:00Z","timestamp":1503446400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-319-67180-2_17","type":"book-chapter","created":{"date-parts":[[2017,8,22]],"date-time":"2017-08-22T04:06:53Z","timestamp":1503374813000},"page":"179-187","source":"Crossref","is-referenced-by-count":1,"title":["Forecasting Freight Inspection Volume Using Bayesian Regularization Artificial Neural Networks: An Aggregation-Disaggregation Procedure"],"prefix":"10.1007","author":[{"given":"Juan Jes\u00fas","family":"Ruiz-Aguilar","sequence":"first","affiliation":[]},{"given":"Jos\u00e9 Antonio","family":"Moscoso-L\u00f3pez","sequence":"additional","affiliation":[]},{"given":"Ignacio","family":"Turias","sequence":"additional","affiliation":[]},{"given":"Javier","family":"Gonz\u00e1lez-Enrique","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,8,23]]},"reference":[{"key":"17_CR1","doi-asserted-by":"crossref","first-page":"797","DOI":"10.1016\/j.mcm.2007.05.005","volume":"47","author":"C-C Chou","year":"2008","unstructured":"Chou, C.-C., Chu, C.-W., Liang, G.-S.: A modified regression model for forecasting the volumes of Taiwan\u2019s import containers. Math. Comput. Model. 47, 797\u2013807 (2008)","journal-title":"Math. Comput. Model."},{"key":"17_CR2","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/0968-090X(95)00009-8","volume":"3","author":"M Dougherty","year":"1995","unstructured":"Dougherty, M.: A review of neural networks applied to transport. Transp. Res. Part C Emerg. Technol. 3, 247\u2013260 (1995)","journal-title":"Transp. Res. Part C Emerg. Technol."},{"key":"17_CR3","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/0893-6080(89)90020-8","volume":"2","author":"K Hornik","year":"1989","unstructured":"Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359\u2013366 (1989)","journal-title":"Neural Netw."},{"key":"17_CR4","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1016\/S2092-5212(11)80022-2","volume":"27","author":"V Gosasang","year":"2011","unstructured":"Gosasang, V., Chandraprakaikul, W., Kiattisin, S.: A comparison of traditional and neural networks forecasting techniques for container throughput at Bangkok port. Asian J. Shipp. Logist. 27, 463\u2013482 (2011)","journal-title":"Asian J. Shipp. Logist."},{"key":"17_CR5","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1016\/j.trc.2010.10.004","volume":"19","author":"MG Karlaftis","year":"2011","unstructured":"Karlaftis, M.G., Vlahogianni, E.I.: Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transp. Res. Part C Emerg. Technol. 19, 387\u2013399 (2011)","journal-title":"Transp. Res. Part C Emerg. Technol."},{"key":"17_CR6","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1093\/jigpal\/jzq035","volume":"19","author":"E Corchado","year":"2011","unstructured":"Corchado, E., Arroyo, A., Tricio, V.: Soft computing models to identify typical meteorological days. Log. J. IGPL 19, 373\u2013383 (2011)","journal-title":"Log. J. IGPL"},{"key":"17_CR7","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/S0169-2070(96)00697-8","volume":"13","author":"MS Dougherty","year":"1997","unstructured":"Dougherty, M.S., Cobbett, M.R.: Short-term inter-urban traffic forecasts using neural networks. Int. J. Forecast. 13, 21\u201331 (1997)","journal-title":"Int. J. Forecast."},{"key":"17_CR8","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1016\/j.engappai.2003.09.011","volume":"16","author":"A Dharia","year":"2003","unstructured":"Dharia, A., Adeli, H.: Neural network model for rapid forecasting of freeway link travel time. Eng. Appl. Artif. Intell. 16, 607\u2013613 (2003)","journal-title":"Eng. Appl. Artif. Intell."},{"key":"17_CR9","doi-asserted-by":"crossref","unstructured":"Moscoso Lopez, J.A., Ruiz-Aguilar, J.J., Turias, I., Cerb\u00e1n, M., Jim\u00e9nez-Come, M.J.: A comparison of forecasting methods for ro-ro traffic: a case study in the strait of Gibraltar. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) Proceedings of the Ninth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX, Brun\u00f3w, Poland, June 30\u2013July 4 2014, pp. 345\u2013353. Springer (2014)","DOI":"10.1007\/978-3-319-07013-1_33"},{"key":"17_CR10","doi-asserted-by":"crossref","first-page":"1157","DOI":"10.1016\/j.trc.2011.01.003","volume":"19","author":"B Yu","year":"2011","unstructured":"Yu, B., Lam, W.H.K., Tam, M.L.: Bus arrival time prediction at bus stop with multiple routes. Transp. Res. Part C Emerg. Technol. 19, 1157\u20131170 (2011)","journal-title":"Transp. Res. Part C Emerg. Technol."},{"key":"17_CR11","doi-asserted-by":"crossref","first-page":"90","DOI":"10.3141\/1763-14","volume":"1763","author":"HM Al-Deek","year":"2001","unstructured":"Al-Deek, H.M.: Which method is better for developing freight planning models at seaports\u2014neural networks or multiple regression? Transp. Res. Rec. J. Transp. Res. Board. 1763, 90\u201397 (2001)","journal-title":"Transp. Res. Rec. J. Transp. Res. Board."},{"key":"17_CR12","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1061\/(ASCE)0733-9488(2004)130:3(133)","volume":"130","author":"WHK Lam","year":"2004","unstructured":"Lam, W.H.K., Ng, P.L.P., Seabrooke, W., Hui, E.C.M.: Forecasts and reliability analysis of port cargo throughput in Hong Kong. J. Urban Plan. Dev. 130, 133\u2013144 (2004)","journal-title":"J. Urban Plan. Dev."},{"key":"17_CR13","doi-asserted-by":"crossref","unstructured":"Moscoso-L\u00f3pez, J.A., Turias Turias, I.J., Come, M.J., Ruiz-Aguilar, J.J., Cerb\u00e1n, M.: A two-stage forecasting approach for short-term intermodal freight prediction. Int. Trans. Oper. Res. 18, 108\u2013114 (2016)","DOI":"10.1111\/itor.12337"},{"key":"17_CR14","doi-asserted-by":"crossref","first-page":"163","DOI":"10.15446\/dyna.v83n195.47027","volume":"83","author":"JJ Ruiz-Aguilar","year":"2016","unstructured":"Ruiz-Aguilar, J.J., Turias, I., Moscoso-L\u00f3pez, J.A., Jim\u00e9nez-Come, M.J., Cerb\u00e1n, M.: Forecasting of short-term flow freight congestion: a study case of Algeciras Bay Port (Spain). DYNA 83, 163\u2013172 (2016)","journal-title":"DYNA"},{"key":"17_CR15","doi-asserted-by":"crossref","unstructured":"Ruiz-Aguilar, J.-J., Turias, I., Moscoso-L\u00f3pez, J.-A., Jim\u00e9nez-Come, M.-J., Cerb\u00e1n-Jim\u00e9nez, M.: Efficient goods inspection demand at ports: a comparative forecasting approach. Int. Trans. Oper. Res. 20, 767\u2013794 (2017)","DOI":"10.1111\/itor.12397"},{"key":"17_CR16","doi-asserted-by":"crossref","unstructured":"Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E, McClelland, J.L. (ed.) Parallel Distributed Processing, pp. 318\u2013362. MIT Press, Cambridge (1986)","DOI":"10.21236\/ADA164453"},{"key":"17_CR17","doi-asserted-by":"crossref","first-page":"448","DOI":"10.1162\/neco.1992.4.3.448","volume":"4","author":"DJC MacKay","year":"1992","unstructured":"MacKay, D.J.C.: A practical Bayesian framework for backpropagation networks. Neural Comput. 4, 448\u2013472 (1992)","journal-title":"Neural Comput."},{"key":"17_CR18","doi-asserted-by":"crossref","unstructured":"Foresee, F., Hagan, M.: Gauss-Newton approximation to Bayesian learning. In: International Conference on Neural Network (1997)","DOI":"10.1109\/ICNN.1997.614194"},{"key":"17_CR19","doi-asserted-by":"crossref","first-page":"989","DOI":"10.1109\/72.329697","volume":"5","author":"MT Hagan","year":"1994","unstructured":"Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. Neural Netw. IEEE Trans. 5, 989\u2013993 (1994)","journal-title":"Neural Netw. IEEE Trans."},{"key":"17_CR20","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1016\/S0968-090X(99)00005-4","volume":"6","author":"SI Khan","year":"1998","unstructured":"Khan, S.I., Ritchie, S.G.: Statistical and neural classifiers to detect traffic operational problems on urban arterials. Transp. Res. Part C Emerg. Technol. 6, 291\u2013314 (1998)","journal-title":"Transp. Res. Part C Emerg. Technol."}],"container-title":["Advances in Intelligent Systems and Computing","International Joint Conference SOCO\u201917-CISIS\u201917-ICEUTE\u201917 Le\u00f3n, Spain, September 6\u20138, 2017, Proceeding"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-67180-2_17","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,2]],"date-time":"2019-10-02T17:03:43Z","timestamp":1570035823000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-67180-2_17"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,8,23]]},"ISBN":["9783319671796","9783319671802"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-67180-2_17","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2017,8,23]]}}}