{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T19:25:37Z","timestamp":1725909937272},"publisher-location":"Cham","reference-count":23,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319668239"},{"type":"electronic","value":"9783319668246"}],"license":[{"start":{"date-parts":[[2017,8,30]],"date-time":"2017-08-30T00:00:00Z","timestamp":1504051200000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-319-66824-6_42","type":"book-chapter","created":{"date-parts":[[2017,8,29]],"date-time":"2017-08-29T01:34:30Z","timestamp":1503970470000},"page":"480-492","source":"Crossref","is-referenced-by-count":2,"title":["Ordered Fuzzy GARCH Model for Volatility Forecasting"],"prefix":"10.1007","author":[{"given":"Adam","family":"Marsza\u0142ek","sequence":"first","affiliation":[]},{"given":"Tadeusz","family":"Burczy\u0144ski","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,8,30]]},"reference":[{"key":"42_CR1","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/0304-4076(86)90063-1","volume":"31","author":"T Bollerslev","year":"1986","unstructured":"Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31, 307\u2013327 (1986)","journal-title":"J. Econometrics"},{"key":"42_CR2","doi-asserted-by":"crossref","first-page":"1388","DOI":"10.1016\/j.asoc.2010.04.010","volume":"11","author":"J Chang","year":"2011","unstructured":"Chang, J., Wei, L., Cheng, C.: A hybrid ANFIS model based on AR and volatility for TAIEX forecasting. Appl. Soft Comput. 11, 1388\u20131395 (2011)","journal-title":"Appl. Soft Comput."},{"key":"42_CR3","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.epsr.2010.07.015","volume":"81","author":"LS Coelho","year":"2011","unstructured":"Coelho, L.S., Santos, A.A.P.: A RBF neural network model with GARCH errors: application to electricity price forecasting. Eletric Power Syst. Res. 81, 74\u201383 (2011)","journal-title":"Eletric Power Syst. Res."},{"key":"42_CR4","doi-asserted-by":"crossref","first-page":"987","DOI":"10.2307\/1912773","volume":"50","author":"RF Engle","year":"1982","unstructured":"Engle, R.F.: Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 987\u20131007 (1982)","journal-title":"Econometrica"},{"key":"42_CR5","doi-asserted-by":"crossref","first-page":"1116","DOI":"10.1016\/S0148-2963(03)00043-2","volume":"57","author":"SA Hamid","year":"2004","unstructured":"Hamid, S.A., Iqbal, Z.: Using neural networks for forecasting volatility of S&P 500. J. Bus. Res. 57, 1116\u20131125 (2004)","journal-title":"J. Bus. Res."},{"key":"42_CR6","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1016\/j.jeconom.2008.08.016","volume":"146","author":"H Han","year":"2008","unstructured":"Han, H., Park, J.Y.: Time series properties of ARCH processes with persistent covariates. J. Econometrics 146, 275\u2013292 (2008)","journal-title":"J. Econometrics"},{"key":"42_CR7","doi-asserted-by":"crossref","first-page":"3930","DOI":"10.1016\/j.ins.2009.07.009","volume":"179","author":"J Hung","year":"2009","unstructured":"Hung, J.: A fuzzy asymmetric GARCH model applied to stock markets. Inf. Sci. 179, 3930\u20133943 (2009)","journal-title":"Inf. Sci."},{"key":"42_CR8","unstructured":"Kosi\u0144ski, W., Prokopowicz, P., \u015al\u0229zak, D.: Drawback of fuzzy arithmetic - new intuitions and propositions. In: Burczy\u0144ski, T., Cholewa, W., Moczulski, W. (eds.) Proceedings of the Methods of Artificial Intelligence, pp. 231\u2013237. PACM, Gliwice (2002)"},{"key":"42_CR9","doi-asserted-by":"crossref","unstructured":"Kosi\u0144ski, W., Prokopowicz, P., \u015al\u0229zak, D.: On algebraic operations on fuzzy numbers. In: Klopotek, M., Wierzcho\u0144, S.T., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining, Proceedings of International Symposium on IIS: IIPWM 2003, Zakopane, Poland, pp. 353-362. Physica Verlag, Heidelberg (2003)","DOI":"10.1007\/978-3-540-36562-4_37"},{"issue":"3","key":"42_CR10","first-page":"327","volume":"51","author":"W Kosi\u0144ski","year":"2003","unstructured":"Kosi\u0144ski, W., Prokopowicz, P., \u015al\u0229zak, D.: Ordered fuzzy numbers. Bull. Polish Acad. Sci. Ser. Sci. Math. 51(3), 327\u2013338 (2003)","journal-title":"Bull. Polish Acad. Sci. Ser. Sci. Math."},{"issue":"46","key":"42_CR11","first-page":"37","volume":"32","author":"W Kosi\u0144ski","year":"2004","unstructured":"Kosi\u0144ski, W., Prokopowicz, P.: Algebra of fuzzy numbers. Math. Applicanda 32(46), 37\u201363 (2004). Journals of the Polish Mathematical Society (in Polish)","journal-title":"Math. Applicanda"},{"issue":"1","key":"42_CR12","first-page":"71","volume":"11","author":"W Kosi\u0144ski","year":"2006","unstructured":"Kosi\u0144ski, W.: On soft computing and modelling. Image Process. Commun. 11(1), 71\u201382 (2006)","journal-title":"Image Process. Commun."},{"key":"42_CR13","doi-asserted-by":"crossref","unstructured":"Kosi\u0144ski, W., Frischmuth, K., Wilczy\u0144ska-Sztyma, D.: A new fuzzy approach to ordinary differential equations. In: Rutkowski, L., et al. (eds.) ICAISC 2010, Part I. LNAI, vol. 6113, pp. 120\u2013127. Springer, Heidelberg (2010)","DOI":"10.1007\/978-3-642-13208-7_16"},{"key":"42_CR14","doi-asserted-by":"crossref","first-page":"27","DOI":"10.3233\/IFS-2012-0491","volume":"23","author":"I Luna","year":"2012","unstructured":"Luna, I., Ballini, R.: Adaptive fuzzy system to forecast financial time series volatility. J. Intell. Fuzzy Syst. 23, 27\u201338 (2012)","journal-title":"J. Intell. Fuzzy Syst."},{"key":"42_CR15","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1007\/s10614-015-9535-2","volume":"48","author":"L Maciel","year":"2016","unstructured":"Maciel, L., Gomide, F., Ballini, R.: Evolving fuzzy-GARCH approach for financial volatility modeling and forecasting. Comput. Econ. 48, 379\u2013398 (2016)","journal-title":"Comput. Econ."},{"key":"42_CR16","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1007\/s10700-013-9161-1","volume":"12","author":"S Muzzioli","year":"2013","unstructured":"Muzzioli, S., De Baets, B.: A comparative assessment of different fuzzy regression methods for volatility forecasting. Fuzzy Optim. Decis. Making 12, 433\u2013450 (2013)","journal-title":"Fuzzy Optim. Decis. Making"},{"key":"42_CR17","doi-asserted-by":"crossref","unstructured":"Marsza\u0142ek, A., Burczy\u0144ski, T.: Financial fuzzy time series models based on ordered fuzzy numbers. In: Pedrycz, W., Chen, S.-M. (eds.) Time Series Analysis, Model and Applications. ISRL, vol. 47, pp. 77\u201395. Springer, Heidelberg (2013)","DOI":"10.1007\/978-3-642-33439-9_4"},{"key":"42_CR18","doi-asserted-by":"crossref","unstructured":"Marsza\u0142ek, A., Burczy\u0144ski, T.: Modelling financial high frequency data using ordered fuzzy numbers. In: Rutkowski, L., et al. (eds.) ICAISC 2013. LNAI, vol. 7894, Part I, pp. 345\u2013352. Springer, Heidelberg (2013)","DOI":"10.1007\/978-3-642-38658-9_31"},{"key":"42_CR19","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.ins.2014.03.026","volume":"273","author":"A Marsza\u0142ek","year":"2014","unstructured":"Marsza\u0142ek, A., Burczy\u0144ski, T.: Modeling and forecasting financial time series with ordered fuzzy candlesticks. Inf. Sci. 273, 144\u2013155 (2014)","journal-title":"Inf. Sci."},{"key":"42_CR20","doi-asserted-by":"crossref","unstructured":"Popov, A.A., Bykhanov, K.V.: Modeling volatility of time series using fuzzy GARCH models. In: Annals of the 9th Russian-Korean International Symposium on Science and Technology (2005)","DOI":"10.1109\/KORUS.2005.1507875"},{"key":"42_CR21","doi-asserted-by":"crossref","unstructured":"Prokopowicz, P.: Flexible and Simple Methods of Calculations on Fuzzy Numbers with the Ordered Fuzzy Numbers Model. LNCS (LNAI), vol. 7894, pp. 365\u2013375. Springer, Heidelberg (2013)","DOI":"10.1007\/978-3-642-38658-9_33"},{"key":"42_CR22","unstructured":"Sheppard, K.: ARCH Toolbox for Python [Data set]. Zenodo (2015). http:\/\/doi.org\/10.5281\/zenodo.15681"},{"key":"42_CR23","doi-asserted-by":"crossref","first-page":"3192","DOI":"10.1016\/j.physa.2008.01.074","volume":"387","author":"C Tseng","year":"2008","unstructured":"Tseng, C., Cheng, S., Wang, Y., Peng, J.: Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices. Phys. A: Stat. Mech. Appl. 387, 3192\u20133200 (2008)","journal-title":"Phys. A: Stat. Mech. Appl."}],"container-title":["Advances in Intelligent Systems and Computing","Advances in Fuzzy Logic and Technology 2017"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-66824-6_42","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,10,16]],"date-time":"2020-10-16T09:05:11Z","timestamp":1602839111000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-66824-6_42"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,8,30]]},"ISBN":["9783319668239","9783319668246"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-66824-6_42","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2017,8,30]]}}}