{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T18:28:46Z","timestamp":1742927326380,"version":"3.40.3"},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319652979"},{"type":"electronic","value":"9783319652986"}],"license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017]]},"DOI":"10.1007\/978-3-319-65298-6_42","type":"book-chapter","created":{"date-parts":[[2017,8,5]],"date-time":"2017-08-05T03:34:11Z","timestamp":1501904051000},"page":"460-471","source":"Crossref","is-referenced-by-count":0,"title":["Graspable Object Classification with Multi-loss Hierarchical Representations"],"prefix":"10.1007","author":[{"given":"Zhichao","family":"Wang","sequence":"first","affiliation":[]},{"given":"Zhiqi","family":"Li","sequence":"additional","affiliation":[]},{"given":"Bin","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Hong","family":"Liu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,8,6]]},"reference":[{"issue":"4\u20135","key":"42_CR1","doi-asserted-by":"crossref","first-page":"705","DOI":"10.1177\/0278364914549607","volume":"34","author":"I Lenz","year":"2015","unstructured":"Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34(4\u20135), 705\u2013724 (2015)","journal-title":"Int. J. Robot. Res."},{"key":"42_CR2","doi-asserted-by":"crossref","unstructured":"Redmon, J., Angelova, A.: Real-time grasp detection using convolutional neural networks 2015, pp. 1316\u20131322 (2015)","DOI":"10.1109\/ICRA.2015.7139361"},{"key":"42_CR3","doi-asserted-by":"publisher","unstructured":"Wang, Z., Li, Z., Wang, B., Liu, H.: Robot grasp detection using multimodal deep convolutional neural networks. Adv. Mech. Eng. 8(9) (2016). doi: 10.1177\/1687814016668077","DOI":"10.1177\/1687814016668077"},{"key":"42_CR4","doi-asserted-by":"crossref","unstructured":"Girshick, R.: Fast R-CNN. In: International Conference on Computer Vision (ICCV) (2015)","DOI":"10.1109\/ICCV.2015.169"},{"key":"42_CR5","doi-asserted-by":"crossref","unstructured":"Bo, L., Lai, K., Ren, X., Fox, D.: Object recognition with hierarchical kernel descriptors. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1729\u20131736. IEEE (2011)","DOI":"10.1109\/CVPR.2011.5995719"},{"issue":"5786","key":"42_CR6","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","volume":"313","author":"GE Hinton","year":"2006","unstructured":"Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504\u2013507 (2006)","journal-title":"Science"},{"key":"42_CR7","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097\u20131105 (2012)"},{"key":"42_CR8","doi-asserted-by":"crossref","unstructured":"Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3128\u20133137 (2015)","DOI":"10.1109\/CVPR.2015.7298932"},{"issue":"2","key":"42_CR9","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1177\/0278364907087172","volume":"27","author":"A Saxena","year":"2008","unstructured":"Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. Int. J. Robot. Res. 27(2), 157\u2013173 (2008)","journal-title":"Int. J. Robot. Res."},{"key":"42_CR10","doi-asserted-by":"crossref","unstructured":"Levine, S., Pastor, P., Krizhevsky, A., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection (2016)","DOI":"10.1007\/978-3-319-50115-4_16"},{"issue":"2","key":"42_CR11","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1109\/TRO.2013.2289018","volume":"30","author":"J Bohg","year":"2014","unstructured":"Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis a survey. IEEE Trans. Rob. 30(2), 289\u2013309 (2014)","journal-title":"IEEE Trans. Rob."},{"key":"42_CR12","doi-asserted-by":"crossref","unstructured":"Pinto, L., Gupta, A.: Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours (2015)","DOI":"10.1109\/ICRA.2016.7487517"},{"key":"42_CR13","doi-asserted-by":"crossref","unstructured":"Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades, pp. 3150\u20133158 (2016)","DOI":"10.1109\/CVPR.2016.343"},{"key":"42_CR14","doi-asserted-by":"crossref","unstructured":"Wang, K., Lin, L., Zuo, W., Gu, S., Zhang, L.: Dictionary pair classifier driven convolutional neural networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2138\u20132146 (2016)","DOI":"10.1109\/CVPR.2016.235"},{"key":"42_CR15","unstructured":"Bo, L., Ren, X., Fox, D.: Kernel descriptors for visual recognition. In: Advances in Neural Information Processing Systems, pp. 244\u2013252 (2010)"},{"key":"42_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"583","DOI":"10.1007\/BFb0020217","volume-title":"Artificial Neural Networks \u2014 ICANN\u201997","author":"B Sch\u00f6lkopf","year":"1997","unstructured":"Sch\u00f6lkopf, B., Smola, A., M\u00fcller, K.-R.: Kernel principal component analysis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583\u2013588. Springer, Heidelberg (1997). doi: 10.1007\/BFb0020217"},{"key":"42_CR17","unstructured":"Wang, Q.: Kernel principal component analysis and its applications in face recognition and active shape models (2012). arXiv preprint arXiv:1207.3538"},{"key":"42_CR18","unstructured":"Dauphin, Y., De Vries, H., Chung, J., Bengio, Y.: RMSprop and equilibrated adaptive learning rates for non-convex optimization. arxiv preprint (2015). arXiv preprint arXiv:1502.04390"},{"key":"42_CR19","doi-asserted-by":"crossref","unstructured":"Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D object dataset. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1817\u20131824. IEEE (2011)","DOI":"10.1109\/ICRA.2011.5980382"},{"issue":"2","key":"42_CR20","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","volume":"60","author":"DG Lowe","year":"2004","unstructured":"Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91\u2013110 (2004)","journal-title":"Int. J. Comput. Vision"}],"container-title":["Lecture Notes in Computer Science","Intelligent Robotics and Applications"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-65298-6_42","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,1]],"date-time":"2019-10-01T22:14:01Z","timestamp":1569968041000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-65298-6_42"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"ISBN":["9783319652979","9783319652986"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-65298-6_42","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2017]]}}}