{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T18:24:35Z","timestamp":1725906275757},"publisher-location":"Cham","reference-count":13,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319651712"},{"type":"electronic","value":"9783319651729"}],"license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017]]},"DOI":"10.1007\/978-3-319-65172-9_37","type":"book-chapter","created":{"date-parts":[[2017,8,1]],"date-time":"2017-08-01T00:38:54Z","timestamp":1501547934000},"page":"441-450","source":"Crossref","is-referenced-by-count":2,"title":["Information Feature Selection: Using Local Attribute Selections to Represent Connected Distributions in Complex Datasets"],"prefix":"10.1007","author":[{"given":"Ioannis M.","family":"Stephanakis","sequence":"first","affiliation":[]},{"given":"Theodoros","family":"Iliou","sequence":"additional","affiliation":[]},{"given":"George","family":"Anastassopoulos","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,8,2]]},"reference":[{"key":"37_CR1","doi-asserted-by":"crossref","unstructured":"Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databeses. In: Proceedings of the ACM SIGMOD Conference on Management of Data, Montreal, Canada, June 1996","DOI":"10.1145\/233269.233324"},{"key":"37_CR2","doi-asserted-by":"crossref","unstructured":"Guha, S., Rastog, R., Shim, K.: ROCK: a robust clustering algorithm for categorical attributes. In: Proceedings ICDE 1999, pp. 512\u2013521 (1999)","DOI":"10.1109\/ICDE.1999.754967"},{"key":"37_CR3","unstructured":"Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery in Databases and Data Mining, Portland, Oregon, August 1996"},{"key":"37_CR4","unstructured":"Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation based filter solution. In: Proceedings of the 20th International Conference on Machine Learning, pp. 56\u201363 (2003)"},{"key":"37_CR5","doi-asserted-by":"crossref","unstructured":"Dash, M., Choi, K., Scheuermann, P., Liu, H.: Feature selection for clustering - a filter solution. In: Proceedings of the Second International Conference on Data Mining, pp. 115\u2013122 (2002)","DOI":"10.1109\/ICDM.2002.1183893"},{"key":"37_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"248","DOI":"10.1007\/978-3-642-14400-4_20","volume-title":"Advances in Data Mining. Applications and Theoretical Aspects","author":"B Auffarth","year":"2010","unstructured":"Auffarth, B., L\u00f3pez, M., Cerquides, J.: Comparison of redundancy and relevance measures for feature selection in tissue classification of CT images. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 248\u2013262. Springer, Heidelberg (2010). doi:\n10.1007\/978-3-642-14400-4_20"},{"key":"37_CR7","doi-asserted-by":"crossref","first-page":"1226","DOI":"10.1109\/TPAMI.2005.159","volume":"27","author":"H Peng","year":"2005","unstructured":"Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-relevance and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226\u20131238 (2005)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"37_CR8","doi-asserted-by":"crossref","first-page":"537","DOI":"10.1109\/72.298224","volume":"5","author":"R Battiti","year":"1994","unstructured":"Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 5, 537\u2013550 (1994)","journal-title":"IEEE Trans. Neural Netw."},{"issue":"1","key":"37_CR9","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1109\/72.977291","volume":"13","author":"N Kwak","year":"2002","unstructured":"Kwak, N., Choi, C.H.: Input feature selection for classification problems. IEEE Trans. Neural Netw. 13(1), 143\u2013159 (2002)","journal-title":"IEEE Trans. Neural Netw."},{"key":"37_CR10","unstructured":"Doquire, G., Verleysen, M.: Mutual information based feature selection for mixed data. In: ESANN 2011 Proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 27\u201329 April 2011. ISBN 978-2-87419-044-5"},{"key":"37_CR11","doi-asserted-by":"crossref","unstructured":"Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, SIGMOD 1998, Seattle, Washington, USA, 1\u20134 June 1998, pp. 94\u2013105 (1998)","DOI":"10.1145\/276304.276314"},{"key":"37_CR12","doi-asserted-by":"crossref","first-page":"1213","DOI":"10.1145\/7902.7906","volume":"29","author":"C Stanfill","year":"1986","unstructured":"Stanfill, C., Waltz, B.: Towards memory based reasoning. Commun. ACM 29, 1213\u20131228 (1986)","journal-title":"Commun. ACM"},{"issue":"2","key":"37_CR13","doi-asserted-by":"publisher","first-page":"122","DOI":"10.1007\/s005002-015-0290-9","volume":"132","author":"N Shirazi","year":"2015","unstructured":"Shirazi, N., Simpson, S., Oechsner, S., Mauthe, A., Hutchison, D.: A framework for resilience management in the cloud. Electrotech. Informationstechnik 132(2), 122\u2013132 (2015). doi:\n10.1007\/s005002-015-0290-9","journal-title":"Electrotech. Informationstechnik"}],"container-title":["Communications in Computer and Information Science","Engineering Applications of Neural Networks"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-65172-9_37","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2017,8,8]],"date-time":"2017-08-08T13:36:05Z","timestamp":1502199365000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-65172-9_37"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"ISBN":["9783319651712","9783319651729"],"references-count":13,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-65172-9_37","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2017]]}}}