{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T14:15:49Z","timestamp":1726409749595},"publisher-location":"Cham","reference-count":21,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319618128"},{"type":"electronic","value":"9783319618135"}],"license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017]]},"DOI":"10.1007\/978-3-319-61813-5_13","type":"book-chapter","created":{"date-parts":[[2017,8,18]],"date-time":"2017-08-18T08:00:36Z","timestamp":1503043236000},"page":"132-141","source":"Crossref","is-referenced-by-count":0,"title":["Deep Learning Based Consumer Classification for Smart Grid"],"prefix":"10.1007","author":[{"given":"K\u00e1lm\u00e1n","family":"Tornai","sequence":"first","affiliation":[]},{"given":"Andr\u00e1s","family":"Ol\u00e1h","sequence":"additional","affiliation":[]},{"given":"Rajmund","family":"Drenyovszki","sequence":"additional","affiliation":[]},{"given":"L\u00f3r\u00e1nt","family":"Kov\u00e1cs","sequence":"additional","affiliation":[]},{"given":"Istv\u00e1n","family":"Pint\u00e9r","sequence":"additional","affiliation":[]},{"given":"J\u00e1nos","family":"Levendovszky","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,8,19]]},"reference":[{"key":"13_CR1","unstructured":"Commercial and residential hourly load profiles for all TMY3 locations in the united states. http:\/\/en.openei.org\/datasets\/dataset\/commercial-and-residential-hourly-load-profiles-for-all-tmy3\/locations-in-the-united-states . Accessed 30 Aug 2016"},{"key":"13_CR2","volume-title":"Pattern Recognition and Machine Learning","author":"C Bishop","year":"2006","unstructured":"Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)"},{"key":"13_CR3","doi-asserted-by":"crossref","unstructured":"Chan, S., Kao, B., Yip, C., Tang, M.: A brief survey on sequence classification. In: Proceedings Eighth International Conference on Database Systems for Advanced Applications (DASFAA 2003), pp. 119\u2013124. IEEE (2003)","DOI":"10.1109\/DASFAA.2003.1192375"},{"issue":"4","key":"13_CR4","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/BF00344251","volume":"36","author":"K Fukushima","year":"1980","unstructured":"Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193\u2013202 (1980)","journal-title":"Biol. Cybern."},{"key":"13_CR5","volume-title":"Neural Networks, A Comprehensive Foundation","author":"S Haykin","year":"2008","unstructured":"Haykin, S.: Neural Networks, A Comprehensive Foundation, 3rd edn. Pearson, Prentince Hall, Upper Saddle River (2008)","edition":"3"},{"issue":"10","key":"13_CR6","doi-asserted-by":"crossref","first-page":"2595","DOI":"10.1016\/j.cor.2004.06.021","volume":"32","author":"F Kaefer","year":"2005","unstructured":"Kaefer, F., Heilman, C.M., Ramenofsky, S.D.: A neural network application to consumer classification to improve the timing of direct marketing activities. Comput. Oper. Res. 32(10), 2595\u20132615 (2005)","journal-title":"Comput. Oper. Res."},{"issue":"2","key":"13_CR7","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1007\/s10618-010-0206-6","volume":"23","author":"M Kim","year":"2011","unstructured":"Kim, M., Pavlovic, V.: Sequence classification via large margin Hidden Markov Models. Data Min. Knowl. Disc. 23(2), 322\u2013344 (2011)","journal-title":"Data Min. Knowl. Disc."},{"key":"13_CR8","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.rser.2013.03.023","volume":"24","author":"K Zhou le","year":"2013","unstructured":"le Zhou, K., Yang, S.L., Shen, C.: A review of electric load classification in smart grid environment. Renew. Sustain. Energy Rev. 24, 103\u2013110 (2013)","journal-title":"Renew. Sustain. Energy Rev."},{"key":"13_CR9","unstructured":"Lo, K.L., Zakaria, Z.: Electricity consumer classification using artificial intelligence. In: 39th International Universities Power Engineering Conference, UPEC 2004, vol. 1, pp. 443-447, September 2004"},{"key":"13_CR10","first-page":"419","volume":"2","author":"H Lodhi","year":"2002","unstructured":"Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string kernels. J. Mach. Learn. Res. 2, 419\u2013444 (2002)","journal-title":"J. Mach. Learn. Res."},{"volume-title":"Data Mining and Knowledge Discovery Handbook","year":"2005","key":"13_CR11","unstructured":"Maimon, O., Rokach, L. (eds.): Data Mining and Knowledge Discovery Handbook. Springer, New York (2005)"},{"key":"13_CR12","unstructured":"MATLAB, version 8.6.0 (r2015b). The MathWorks Inc., Natick, Massachusetts (2015)"},{"issue":"3","key":"13_CR13","doi-asserted-by":"crossref","first-page":"435","DOI":"10.1287\/mksc.18.3.435","volume":"18","author":"PM Noble","year":"1999","unstructured":"Noble, P.M., Gruca, T.S.: Industrial pricing: theory and managerial practice. Mark. Sci. 18(3), 435\u2013454 (1999)","journal-title":"Mark. Sci."},{"issue":"15","key":"13_CR14","first-page":"1","volume":"52","author":"S Rani","year":"2012","unstructured":"Rani, S., Sikka, G.: Recent techniques of clustering of time series data: a survey. Int. J. Comput. Appl. 52(15), 1\u20139 (2012)","journal-title":"Int. J. Comput. Appl."},{"issue":"4","key":"13_CR15","doi-asserted-by":"crossref","first-page":"296","DOI":"10.1109\/72.80266","volume":"1","author":"D Ruck","year":"1990","unstructured":"Ruck, D., Rogers, S., Kabrisky, K., Oxley, M., Suter, B.: The multilayer perceptron as an approximation to an optimal Bayes estimator. IEEE Trans. Neural Netw. 1(4), 296\u2013298 (1990)","journal-title":"IEEE Trans. Neural Netw."},{"key":"13_CR16","doi-asserted-by":"crossref","unstructured":"Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533\u2013536 (1986)","DOI":"10.1038\/323533a0"},{"key":"13_CR17","doi-asserted-by":"crossref","unstructured":"Sermanet, P., LeCun, Y.: Traffic sign recognition with multi-scale convolutional networks. In: Proceedings of International Joint Conference on Neural Networks (IJCNN 2011) (2011)","DOI":"10.1109\/IJCNN.2011.6033589"},{"key":"13_CR18","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1016\/j.epsr.2016.07.018","volume":"141","author":"K Tornai","year":"2016","unstructured":"Tornai, K., Kov\u00e1cs, L., Ol\u00e1h, A., Drenyovszki, R., Pint\u00e9r, I., Tisza, D., Levendovszky, J.: Classification for consumption data in smart grid based on forecasting time series. Electr. Power Syst. Res. 141, 191\u2013201 (2016)","journal-title":"Electr. Power Syst. Res."},{"issue":"1","key":"13_CR19","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1145\/1882471.1882478","volume":"12","author":"Z Xing","year":"2010","unstructured":"Xing, Z., Pei, J., Keogh, E.: A brief survey on sequence classification. ACM SIGKDD Explor. Newslett. 12(1), 40\u201348 (2010)","journal-title":"ACM SIGKDD Explor. Newslett."},{"key":"13_CR20","doi-asserted-by":"crossref","unstructured":"Zakaria, Z., Lo, K.L., Sohod, M.H.: Application of fuzzy clustering to determine electricity consumers\u2019 load profiles. In: IEEE International Power and Energy Conference, pp. 99\u2013103, November 2006","DOI":"10.1109\/PECON.2006.346627"},{"issue":"4","key":"13_CR21","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1109\/TPAMI.2004.1265868","volume":"26","author":"B Zhang","year":"2004","unstructured":"Zhang, B., Srihari, S.N.: Fast k-nearest neighbor classification using cluster-based trees. IEEE Trans. Pattern Anal. Mach. Intell. 26(4), 525\u2013528 (2004)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."}],"container-title":["Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering","Smart Grid Inspired Future Technologies"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-61813-5_13","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,2]],"date-time":"2019-10-02T11:06:17Z","timestamp":1570014377000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-61813-5_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"ISBN":["9783319618128","9783319618135"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-61813-5_13","relation":{},"ISSN":["1867-8211","1867-822X"],"issn-type":[{"type":"print","value":"1867-8211"},{"type":"electronic","value":"1867-822X"}],"subject":[],"published":{"date-parts":[[2017]]}}}