{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T13:48:41Z","timestamp":1725889721389},"publisher-location":"Cham","reference-count":35,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319608815"},{"type":"electronic","value":"9783319608822"}],"license":[{"start":{"date-parts":[[2017,6,14]],"date-time":"2017-06-14T00:00:00Z","timestamp":1497398400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2017,6,14]],"date-time":"2017-06-14T00:00:00Z","timestamp":1497398400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-319-60882-2_6","type":"book-chapter","created":{"date-parts":[[2017,6,13]],"date-time":"2017-06-13T10:21:15Z","timestamp":1497349275000},"page":"48-55","source":"Crossref","is-referenced-by-count":12,"title":["Cluster Analysis as a Decision-Making Tool: A Methodological Review"],"prefix":"10.1007","author":[{"given":"Giulia","family":"Caruso","sequence":"first","affiliation":[]},{"given":"Stefano Antonio","family":"Gattone","sequence":"additional","affiliation":[]},{"given":"Francesca","family":"Fortuna","sequence":"additional","affiliation":[]},{"given":"Tonio","family":"Di Battista","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,6,14]]},"reference":[{"key":"6_CR1","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1016\/j.datak.2007.03.016","volume":"63","author":"A Ahmad","year":"2007","unstructured":"Ahmad, A., Dey, L.: A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl. Eng. 63, 503\u2013527 (2007)","journal-title":"Data Knowl. Eng."},{"key":"6_CR2","doi-asserted-by":"crossref","unstructured":"Andritsos, P., Tsaparas, P., Miller, R.J., Sevcik, K.C.: LIMBO: scalable clustering of categorical data. In: Proceedings of the 9th International Conference on Extending Database Technology, pp. 123\u2013146 (2004)","DOI":"10.1007\/978-3-540-24741-8_9"},{"key":"6_CR3","doi-asserted-by":"crossref","unstructured":"Barbar\u00e1, D., Couto, J., Li, Y.: COOLCAT: An entropy-based algorithm for categorical clustering. In: Proceedings of the 11th ACM Conference on Information and Knowledge Management, pp. 582\u2013589 (2002)","DOI":"10.1145\/584792.584888"},{"issue":"12","key":"6_CR4","doi-asserted-by":"crossref","first-page":"1607","DOI":"10.1109\/TKDE.2007.190649","volume":"19","author":"E Cesario","year":"2007","unstructured":"Cesario, E., Manco, G., Ortale, R.: Top-down parameter-free clustering of highdimensional categorical data. IEEE Trans. Knowl. Data Eng. 19(12), 1607\u20131624 (2007)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"6","key":"6_CR5","first-page":"9","volume":"10","author":"R Chauhan","year":"2010","unstructured":"Chauhan, R., Kaur, H., Alam, M.A.: Data clustering method for discovering clusters in spatial cancer databases. Int. J. Comput. Appl. 10(6), 9\u201314 (2010)","journal-title":"Int. J. Comput. Appl."},{"key":"6_CR6","doi-asserted-by":"crossref","first-page":"2228","DOI":"10.1016\/j.patcog.2013.01.027","volume":"46","author":"Y Cheung","year":"2013","unstructured":"Cheung, Y., Hong, J.: Categorical-and-numerical-attribute data clustering based on a unified similarity metric without knowing cluster number. Pattern Recogn. 46, 2228\u20132238 (2013)","journal-title":"Pattern Recogn."},{"issue":"5\u20136","key":"6_CR7","doi-asserted-by":"crossref","first-page":"959","DOI":"10.1080\/00420980410001675896","volume":"41","author":"A Cumbers","year":"2004","unstructured":"Cumbers, A., MacKinnon, D.: Introduction: Clusters in urban and regional development. Urban Stud. 41(5\u20136), 959\u2013969 (2004)","journal-title":"Urban Stud."},{"key":"6_CR8","doi-asserted-by":"crossref","unstructured":"Di Battista, T., De Sanctis, A., Fortuna, F.: Clustering functional data on convex function spaces. In: Di Battista, T., Moreno, E., Racugno, W. (eds.) Topics on Methodological and Applied Statistical Inference. Studies in Theoretical and Applied Statistics, pp. 105\u2013114. Springer (2016)","DOI":"10.1007\/978-3-319-44093-4_11"},{"issue":"2","key":"6_CR9","first-page":"433","volume":"9","author":"T Battista Di","year":"2016","unstructured":"Di Battista, T., Fortuna, F.: Clustering dichotomously scored items through functional data analysis. Electron. J. Appl. Stat. Anal. 9(2), 433\u2013450 (2016)","journal-title":"Electron. J. Appl. Stat. Anal."},{"key":"6_CR10","doi-asserted-by":"crossref","first-page":"117","DOI":"10.5194\/npg-12-117-2005","volume":"12","author":"W Dzwinel","year":"2005","unstructured":"Dzwinel, W., Yuen, D.A., Boryczko, K., Ben-Zion, Y., Yoshioka, S., Ito, T.: Cluster analysis, data-mining, multi-dimensional visualization of earthquakes over space, time and feature space. Nonlinear Processes Geophys. 12, 117\u2013128 (2005)","journal-title":"Nonlinear Processes Geophys."},{"key":"6_CR11","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-319-06599-1","volume-title":"Astronomy and Big Data: A Data Clustering Approach to Identifying Uncertain Galaxy Morphology","author":"K Edwards","year":"2014","unstructured":"Edwards, K., Gaber, M.M.: Astronomy and Big Data: A Data Clustering Approach to Identifying Uncertain Galaxy Morphology, 1st edn. Springer, Heidelberg (2014)","edition":"1"},{"issue":"5","key":"6_CR12","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1016\/S0306-4379(00)00022-3","volume":"25","author":"S Guha","year":"2001","unstructured":"Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for categorical attributes. Inf. Syst. 25(5), 345\u2013366 (2001)","journal-title":"Inf. Syst."},{"key":"6_CR13","volume-title":"Data Mining: Concepts and Techniques","author":"J Han","year":"2011","unstructured":"Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, San Francisco (2011)","edition":"3"},{"key":"6_CR14","unstructured":"Huang, Z.: Clustering large data sets with mixed numeric and categorical values. In: Proceedings in the First Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 21\u201334 (1997)"},{"issue":"4","key":"6_CR15","first-page":"352","volume":"1","author":"L Hunt","year":"2011","unstructured":"Hunt, L., Jorgensen, M.: Clustering mixed data. Wiley Interdisc. Rev.: Data Min. Knowl. Disc. 1(4), 352\u2013361 (2011)","journal-title":"Wiley Interdisc. Rev.: Data Min. Knowl. Disc."},{"issue":"3","key":"6_CR16","doi-asserted-by":"crossref","first-page":"264","DOI":"10.1145\/331499.331504","volume":"31","author":"AK Jain","year":"1999","unstructured":"Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A Review. ACM Comput. Surv. (CSUR) 31(3), 264\u2013323 (1999)","journal-title":"ACM Comput. Surv. (CSUR)"},{"issue":"3","key":"6_CR17","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1007\/s11222-007-9027-x","volume":"17","author":"W Jang","year":"2007","unstructured":"Jang, W., Hendry, M.: Cluster analysis of massive datasets in astronomy. Stat. Comput. 17(3), 253\u2013262 (2007)","journal-title":"Stat. Comput."},{"issue":"14","key":"6_CR18","doi-asserted-by":"crossref","first-page":"673","DOI":"10.1109\/TKDE.2002.1019208","volume":"14","author":"C Li","year":"2002","unstructured":"Li, C., Biswas, G.: Unsupervised learning with mixed numeric and nominal data. IEEE Trans. Knowl. Data Eng. 14(14), 673\u2013690 (2002)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"6_CR19","unstructured":"MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281\u2013297. University of California Press, Berkeley (1967)"},{"key":"6_CR20","doi-asserted-by":"crossref","unstructured":"Milanato, D.: Demand Planning: Processi, metodologie e modelli matematici per la gestione della domanda commerciale, 1st edn. Springer (2008)","DOI":"10.1007\/978-88-470-0822-9"},{"issue":"9","key":"6_CR21","doi-asserted-by":"crossref","first-page":"3387","DOI":"10.1175\/JCLI-D-15-0640.1","volume":"29","author":"P Netzel","year":"2016","unstructured":"Netzel, P., Stepinski, T.: On using a clustering approach for global climate classification. J. Clim. 29(9), 3387\u20133401 (2016)","journal-title":"J. Clim."},{"issue":"1","key":"6_CR22","doi-asserted-by":"crossref","first-page":"2489","DOI":"10.1016\/j.procs.2010.04.281","volume":"1","author":"G Nie","year":"2010","unstructured":"Nie, G., Chen, Y., Zhang, L., Guo, Y.: Credit card customer analysis based on panel data clustering. Procedia Comput. Sci. 1(1), 2489\u20132497 (2010)","journal-title":"Procedia Comput. Sci."},{"key":"6_CR23","doi-asserted-by":"crossref","first-page":"484","DOI":"10.1016\/j.scs.2016.06.003","volume":"27","author":"K Noiva","year":"2016","unstructured":"Noiva, K., Fern\u00e1ndez, J.E., Wescoat Jr., J.L.: Cluster analysis of urban water supply and demand: toward large-scale comparative sustainability planning. Sustain. Cities Soc. 27, 484\u2013496 (2016)","journal-title":"Sustain. Cities Soc."},{"key":"6_CR24","doi-asserted-by":"crossref","unstructured":"Peng, Y., Kou, G., Shi, Y., Chen, Z.: Improving clustering analysis for credit card accounts classification. In: Proceedings of the 5th International Conference on Computational Science\u2013ICCS 2005, Part III, pp. 548\u2013553. Springer, Heidelberg (2005)","DOI":"10.1007\/11428862_75"},{"issue":"2","key":"6_CR25","doi-asserted-by":"crossref","first-page":"134","DOI":"10.2307\/3151680","volume":"20","author":"G Punj","year":"1983","unstructured":"Punj, G., Stewart, D.W.: Cluster analysis in marketing research: Review and suggestions for application. J. Mark. Res. 20(2), 134\u2013148 (1983)","journal-title":"J. Mark. Res."},{"issue":"5","key":"6_CR26","first-page":"43","volume":"10","author":"DH Prasad","year":"2010","unstructured":"Prasad, D.H., Punithavalli, D.M.: A review on data clustering algorithms for mixed data. Glob. J. Comput. Sci. Technol. 10(5), 43\u201348 (2010)","journal-title":"Glob. J. Comput. Sci. Technol."},{"issue":"8","key":"6_CR27","first-page":"1456","volume":"8","author":"S Sarumathi","year":"2014","unstructured":"Sarumathi, S., Shanthi, N., Vidhya, S., Sharmila, M.: A comprehensive review on different mixed data clustering ensemble methods. Int. J. Comput. Electr. Autom. Control Inf. Eng. 8(8), 1456\u20131465 (2014)","journal-title":"Int. J. Comput. Electr. Autom. Control Inf. Eng."},{"key":"6_CR28","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1145\/846183.846188","volume":"1","author":"J Srivastava","year":"2000","unstructured":"Srivastava, J., Cooleyz, R., Deshpande, M., Tan, P.: Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explor. Newsl. 1, 12\u201323 (2000)","journal-title":"SIGKDD Explor. Newsl."},{"key":"6_CR29","volume-title":"Introduction to Data Mining","author":"P Tan","year":"2006","unstructured":"Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn. Pearson, London (2006)","edition":"1"},{"key":"6_CR30","unstructured":"Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. In: Proceedings of the 37th Annual Allerton Conference on Communication, Control and Computing, pp. 368\u2013377 (1999)"},{"key":"6_CR31","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1007\/s00357-011-9075-y","volume":"28","author":"P Valentini","year":"2011","unstructured":"Valentini, P., Di Battista, T., Gattone, S.: Heterogeneneity measures in customer satisfaction analysis. J. classifications 28, 38\u201352 (2011)","journal-title":"J. classifications"},{"key":"6_CR32","doi-asserted-by":"crossref","unstructured":"Veerappa, V., Letier, E.: Clustering stakeholders for requirements decision making. In: Proceedings of the 17th International Working Conference Requirements Engineering: Foundation for Software Quality, pp. 202\u2013208 (2011)","DOI":"10.1007\/978-3-642-19858-8_20"},{"key":"6_CR33","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1192\/bjp.183.2.132","volume":"183","author":"C Wright","year":"2003","unstructured":"Wright, C., Burns, T., James, P.: Assertive outreach teams in London: Models of operation. Br. J. Psychiatry 183, 132\u2013138 (2003)","journal-title":"Br. J. Psychiatry"},{"issue":"1","key":"6_CR34","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1002\/isaf.196","volume":"10","author":"AC Yeo","year":"2001","unstructured":"Yeo, A.C., Smith, K.A., Willis, R.J., Brooks, M.: Clustering technique for risk classification and prediction of claim costs in the automobile insurance industry. Intell. Syst. Account. Finance Manage. 10(1), 39\u201350 (2001)","journal-title":"Intell. Syst. Account. Finance Manage."},{"key":"6_CR35","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.datak.2006.01.005","volume":"60","author":"MJ Zaki","year":"2007","unstructured":"Zaki, M.J., Peters, M., Assent, I., Seidl, T.: CLICKS: An effective algorithm for mining subspace clusters in categorical datasets. Data Knowl. Eng. 60, 51\u201370 (2007)","journal-title":"Data Knowl. Eng."}],"container-title":["Advances in Intelligent Systems and Computing","Decision Economics: In the Tradition of Herbert A. Simon's Heritage"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-60882-2_6","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2017,7,12]],"date-time":"2017-07-12T11:15:47Z","timestamp":1499858147000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-60882-2_6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,6,14]]},"ISBN":["9783319608815","9783319608822"],"references-count":35,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-60882-2_6","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2017,6,14]]}}}