{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T13:26:00Z","timestamp":1725888360794},"publisher-location":"Cham","reference-count":19,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319594231"},{"type":"electronic","value":"9783319594248"}],"license":[{"start":{"date-parts":[[2017,5,26]],"date-time":"2017-05-26T00:00:00Z","timestamp":1495756800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-319-59424-8_3","type":"book-chapter","created":{"date-parts":[[2017,5,25]],"date-time":"2017-05-25T03:24:32Z","timestamp":1495682672000},"page":"23-32","source":"Crossref","is-referenced-by-count":6,"title":["Genetic Algorithms Based Resampling for the Classification of Unbalanced Datasets"],"prefix":"10.1007","author":[{"given":"Marco","family":"Vannucci","sequence":"first","affiliation":[]},{"given":"Valentina","family":"Colla","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,5,26]]},"reference":[{"key":"3_CR1","doi-asserted-by":"crossref","unstructured":"Borselli, A., Colla, V., Vannucci, M., Veroli, M.: A fuzzy inference system applied to defect detection in flat steel production. In: 2010 World Congress on Computational Intelligence, Barcelona, Spain, 18\u201323 July 2010, pp. 148\u2013153 (2010)","DOI":"10.1109\/FUZZY.2010.5584036"},{"key":"3_CR2","doi-asserted-by":"crossref","unstructured":"Stepenosky, N., Polikar, R., Kounios, J., Clark, C.: Ensemble techniques with weighted combination rules for early diagnosis of alzheimer\u2019s disease. In: International Joint Conference on Neural Networks, IJCNN 2006 (2006)","DOI":"10.1109\/IJCNN.2006.246937"},{"issue":"3","key":"3_CR3","first-page":"1","volume":"11","author":"M Vannucci","year":"2010","unstructured":"Vannucci, M., Colla, V., Nastasi, G., Matarese, N.: Detection of rare events within industrial datasets by means of data resampling and specific algorithms. Int. J. Simul. Syst. Sci. Technol. 11(3), 1\u201311 (2010)","journal-title":"Int. J. Simul. Syst. Sci. Technol."},{"key":"3_CR4","doi-asserted-by":"crossref","unstructured":"Garc\u00eda-Pedrajas, N., Ortiz-Boyer, D., Garc\u00eda-Pedrajas, M.D., Fyfe, C.: Class imbalance methods for translation initiation site recognition. In: Proceedings of Trends in Applied Intelligent Systems, IEA\/AIE 2010, Part I, pp. 327\u2013336 (2010)","DOI":"10.1007\/978-3-642-13022-9_33"},{"issue":"9","key":"3_CR5","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1109\/TKDE.2008.239","volume":"21","author":"H He","year":"2009","unstructured":"He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263\u20131284 (2009)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"1","key":"3_CR6","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1111\/j.0824-7935.2004.t01-1-00228.x","volume":"20","author":"A Estabrooks","year":"2004","unstructured":"Estabrooks, A., Japkowicz, N.: A multiple resampling method for learning from imbalanced datasets. Comput. Intell. 20(1), 18\u201336 (2004)","journal-title":"Comput. Intell."},{"key":"3_CR7","unstructured":"Fan, W., Stolfo, S.J., Zhang, J., Chan, P.K.: AdaCost: misclassification cost-sensitive boosting. In: Proceedings of the 16th International Conference on Machine Learning, ICML 1999, pp. 97\u2013105 (1999)"},{"key":"3_CR8","doi-asserted-by":"crossref","first-page":"1207","DOI":"10.1162\/089976600300015565","volume":"12","author":"B Scholkopf","year":"2000","unstructured":"Scholkopf, B., et al.: New support vector algorithms. Neural Comput. 12, 1207\u20131245 (2000)","journal-title":"Neural Comput."},{"issue":"2","key":"3_CR9","doi-asserted-by":"crossref","first-page":"2383","DOI":"10.1016\/j.asoc.2010.09.001","volume":"11","author":"M Vannucci","year":"2011","unstructured":"Vannucci, M., Colla, V.: Novel classification method for sensitive problems and uneven datasets based on neural networks and fuzzy logic. Appl. Soft Comput. 11(2), 2383\u20132390 (2011)","journal-title":"Appl. Soft Comput."},{"key":"3_CR10","series-title":"LNCS","first-page":"1320","volume-title":"IWANN 2009","author":"M Vannucci","year":"2009","unstructured":"Vannucci, M., Colla, V., Sgarbi, M., Toscanelli, O.: Thresholded neural networks for sensitive industrial classification tasks. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 1320\u20131327. Springer, Heidelberg (2009)"},{"key":"3_CR11","unstructured":"Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided selection. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 179\u2013186 (1997)"},{"key":"3_CR12","doi-asserted-by":"crossref","unstructured":"Laurikkala, J.: Improving identification of difficult small classes by balancing class distribution. In: Proceedings of Artificial Intelligence in Medicine: 8th Conference on Artificial Intelligence in Medicine in Europe, pp. 63\u201366 (2001)","DOI":"10.1007\/3-540-48229-6_9"},{"key":"3_CR13","unstructured":"Japkowicz, N.: The class imbalance problem: significance and strategies. In: International Conference on Artificial Intelligence, Las Vegas, Nevada, pp. 111\u2013117 (2000)"},{"key":"3_CR14","doi-asserted-by":"crossref","unstructured":"Ling, C.X., Yang, Q., Wang, J., Zhang, S.: Decision trees with minimal costs. In: Proceedings of the Twenty-First International Conference on Machine Learning, pp. 69\u201376 (2004)","DOI":"10.1145\/1015330.1015369"},{"issue":"1","key":"3_CR15","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1145\/1007730.1007735","volume":"6","author":"GEAPA Batista","year":"2004","unstructured":"Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. Newsl. 6(1), 20\u201329 (2004)","journal-title":"SIGKDD Explor. Newsl."},{"key":"3_CR16","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","volume":"16","author":"NV Chawla","year":"2002","unstructured":"Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell. Res. 16, 321\u2013357 (2002)","journal-title":"J. Artif. Intell. Res."},{"key":"3_CR17","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.neucom.2013.05.059","volume":"135","author":"S Cateni","year":"2014","unstructured":"Cateni, S., Colla, V., Vannucci, M.: A method for resampling imbalanced datasets in binary classification tasks for real-world problems. Neurocomputing 135, 32\u201341 (2014)","journal-title":"Neurocomputing"},{"key":"3_CR18","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1007\/978-3-319-39630-9_33","volume":"56","author":"M Vannucci","year":"2016","unstructured":"Vannucci, M., Colla, V.: Smart under-sampling for the detection of rare patterns in unbalanced datasets. Smart Innov. Syst. Technol. 56, 395\u2013404 (2016)","journal-title":"Smart Innov. Syst. Technol."},{"key":"3_CR19","unstructured":"Lichman, M.: UCI ML Repository. School of Information and Computer Science, University of California, Irvine (2013). http:\/\/archive.ics.uci.edu\/ml"}],"container-title":["Smart Innovation, Systems and Technologies","Intelligent Decision Technologies 2017"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-59424-8_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,25]],"date-time":"2019-09-25T01:28:13Z","timestamp":1569374893000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-59424-8_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,5,26]]},"ISBN":["9783319594231","9783319594248"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-59424-8_3","relation":{},"ISSN":["2190-3018","2190-3026"],"issn-type":[{"type":"print","value":"2190-3018"},{"type":"electronic","value":"2190-3026"}],"subject":[],"published":{"date-parts":[[2017,5,26]]}}}