{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T13:26:09Z","timestamp":1725888369623},"publisher-location":"Cham","reference-count":18,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319594231"},{"type":"electronic","value":"9783319594248"}],"license":[{"start":{"date-parts":[[2017,5,26]],"date-time":"2017-05-26T00:00:00Z","timestamp":1495756800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-319-59424-8_11","type":"book-chapter","created":{"date-parts":[[2017,5,25]],"date-time":"2017-05-25T03:24:32Z","timestamp":1495682672000},"page":"117-126","source":"Crossref","is-referenced-by-count":4,"title":["Evolutionary Regressor Selection in ARIMA Model for Stock Price Time Series Forecasting"],"prefix":"10.1007","author":[{"given":"Ruxandra","family":"Stoean","sequence":"first","affiliation":[]},{"given":"Catalin","family":"Stoean","sequence":"additional","affiliation":[]},{"given":"Adrian","family":"Sandita","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,5,26]]},"reference":[{"key":"11_CR1","doi-asserted-by":"crossref","unstructured":"Arratia, A.: Computational finance. In: An Introductory Course with R, Atlantis Studies in Computational Finance and Financial Engineering, vol. 1 (2014)","DOI":"10.2991\/978-94-6239-070-6"},{"key":"11_CR2","first-page":"17","volume-title":"The Future of Experimental Research","author":"T Bartz-Beielstein","year":"2010","unstructured":"Bartz-Beielstein, T., Preuss, M.: The Future of Experimental Research, pp. 17\u201349. Springer, Heidelberg (2010)"},{"key":"11_CR3","first-page":"393","volume-title":"Genetic and Evolutionary Algorithms for Time Series Forecasting","author":"P Cortez","year":"2001","unstructured":"Cortez, P., Rocha, M., Neves, J.: Genetic and Evolutionary Algorithms for Time Series Forecasting, pp. 393\u2013402. Springer, Heidelberg (2001)"},{"key":"11_CR4","doi-asserted-by":"crossref","unstructured":"Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)","DOI":"10.1007\/978-3-662-05094-1"},{"key":"11_CR5","unstructured":"Hyndman, R., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts, Melbourne (2013). https:\/\/www.otexts.org\/fpp . Accessed Jan 2017"},{"issue":"3","key":"11_CR6","first-page":"1","volume":"26","author":"RJ Hyndman","year":"2008","unstructured":"Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 26(3), 1\u201322 (2008)","journal-title":"J. Stat. Softw."},{"issue":"4","key":"11_CR7","doi-asserted-by":"crossref","first-page":"679","DOI":"10.1016\/j.ijforecast.2006.03.001","volume":"22","author":"RJ Hyndman","year":"2006","unstructured":"Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecast. 22(4), 679\u2013688 (2006)","journal-title":"Int. J. Forecast."},{"key":"11_CR8","first-page":"891","volume-title":"Application of Intervention Analysis on Stock Market Forecasting","author":"MS Khadka","year":"2012","unstructured":"Khadka, M.S., George, K.M., Park, N., Kim, J.B.: Application of Intervention Analysis on Stock Market Forecasting, pp. 891\u2013899. Springer, Heidelberg (2012)"},{"issue":"10\u201312","key":"11_CR9","doi-asserted-by":"crossref","first-page":"2077","DOI":"10.1016\/j.neucom.2010.02.014","volume":"73","author":"K Lukoseviciute","year":"2010","unstructured":"Lukoseviciute, K., Ragulskis, M.: Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems. Neurocomputing 73(10\u201312), 2077\u20132088 (2010)","journal-title":"Neurocomputing"},{"key":"11_CR10","unstructured":"Nau, R.: Statistical forecasting: notes on regression and time series analysis. https:\/\/people.duke.edu\/~rnau\/411home.htm , Accessed Jan 2017"},{"key":"11_CR11","doi-asserted-by":"crossref","unstructured":"Popovici, E., De\u00a0Jong, K.: Understanding cooperative co-evolutionary dynamics via simple fitness landscapes. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation. pp. 507\u2013514. ACM, NY (2005)","DOI":"10.1145\/1068009.1068094"},{"issue":"4","key":"11_CR12","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1080\/07350015.1999.10524830","volume":"17","author":"M Qi","year":"1999","unstructured":"Qi, M.: Nonlinear predictability of stock returns using financial and economic variables. J. Bus. Econ. Stat. 17(4), 419\u2013429 (1999)","journal-title":"J. Bus. Econ. Stat."},{"key":"11_CR13","doi-asserted-by":"crossref","unstructured":"Stoean, C.: In search of the optimal set of indicators when classifying histopathological images. In: 2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 449\u2013455, September 2016","DOI":"10.1109\/SYNASC.2016.074"},{"issue":"4","key":"11_CR14","doi-asserted-by":"crossref","first-page":"238","DOI":"10.1016\/j.compbiomed.2011.02.006","volume":"41","author":"C Stoean","year":"2011","unstructured":"Stoean, C., Stoean, R., Lupsor, M., Stefanescu, H., Badea, R.: Feature selection for a cooperative coevolutionary classifier in liver fibrosis diagnosis. Comput. Biol. Med. 41(4), 238\u2013246 (2011)","journal-title":"Comput. Biol. Med."},{"issue":"10","key":"11_CR15","doi-asserted-by":"crossref","first-page":"1679","DOI":"10.1016\/j.epsr.2008.02.009","volume":"78","author":"B Wang","year":"2008","unstructured":"Wang, B., Tai, N.L., Zhai, H.Q., Ye, J., Zhu, J.D., Qi, L.B.: A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting. Electr. Power Syst. Res. 78(10), 1679\u20131685 (2008)","journal-title":"Electr. Power Syst. Res."},{"key":"11_CR16","unstructured":"Willighagen, E., Ballings, M.: Genalg: R Based Genetic Algorithm (2015)"},{"key":"11_CR17","unstructured":"Wurdinger, K.: Investigating an Evolutionary Strategy to Forecast Time Series. Universiteit Leiden Opleiding Informatica (2009)"},{"issue":"4","key":"11_CR18","doi-asserted-by":"crossref","first-page":"606","DOI":"10.1109\/TEVC.2015.2504420","volume":"20","author":"B Xue","year":"2016","unstructured":"Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606\u2013626 (2016)","journal-title":"IEEE Trans. Evol. Comput."}],"container-title":["Smart Innovation, Systems and Technologies","Intelligent Decision Technologies 2017"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-59424-8_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,24]],"date-time":"2024-06-24T09:54:59Z","timestamp":1719222899000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-59424-8_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,5,26]]},"ISBN":["9783319594231","9783319594248"],"references-count":18,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-59424-8_11","relation":{},"ISSN":["2190-3018","2190-3026"],"issn-type":[{"type":"print","value":"2190-3018"},{"type":"electronic","value":"2190-3026"}],"subject":[],"published":{"date-parts":[[2017,5,26]]}}}