{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T13:19:51Z","timestamp":1725887991547},"publisher-location":"Cham","reference-count":47,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319590592"},{"type":"electronic","value":"9783319590608"}],"license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017]]},"DOI":"10.1007\/978-3-319-59060-8_65","type":"book-chapter","created":{"date-parts":[[2017,5,23]],"date-time":"2017-05-23T08:42:30Z","timestamp":1495528950000},"page":"726-737","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["Heuristic Regression Function Estimation Methods for Data Streams with Concept Drift"],"prefix":"10.1007","author":[{"given":"Maciej","family":"Jaworski","sequence":"first","affiliation":[]},{"given":"Piotr","family":"Duda","sequence":"additional","affiliation":[]},{"given":"Leszek","family":"Rutkowski","sequence":"additional","affiliation":[]},{"given":"Patryk","family":"Najgebauer","sequence":"additional","affiliation":[]},{"given":"Miroslaw","family":"Pawlak","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,5,24]]},"reference":[{"key":"65_CR1","series-title":"Advances in Database Systems","volume-title":"Data Streams: Models and Algorithms","author":"CC Aggarwal","year":"2006","unstructured":"Aggarwal, C.C.: Data Streams: Models and Algorithms. Advances in Database Systems. Springer, New York (2006)"},{"issue":"2","key":"65_CR2","doi-asserted-by":"publisher","first-page":"246","DOI":"10.1109\/TNNLS.2015.2512714","volume":"28","author":"C Alippi","year":"2017","unstructured":"Alippi, C., Boracchi, G., Roveri, M.: Hierarchical change-detection tests. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 246\u2013258 (2017)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"65_CR3","first-page":"1601","volume":"11","author":"A Bifet","year":"2010","unstructured":"Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach. Learn. Res. 11, 1601\u20131604 (2010)","journal-title":"J. Mach. Learn. Res."},{"issue":"9","key":"65_CR4","doi-asserted-by":"publisher","first-page":"2561","DOI":"10.1109\/TPDS.2014.2357019","volume":"26","author":"J Bilski","year":"2015","unstructured":"Bilski, J., Smolag, J.: Parallel architectures for learning the RTRN and Elman dynamic neural networks. IEEE Trans. Parallel Distrib. Syst. 26(9), 2561\u20132570 (2015)","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"issue":"1","key":"65_CR5","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1109\/TNNLS.2013.2251352","volume":"25","author":"D Brzezinski","year":"2014","unstructured":"Brzezinski, D., Stefanowski, J.: Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 81\u201394 (2014)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"65_CR6","first-page":"113","volume":"15","author":"LP Devroye","year":"1979","unstructured":"Devroye, L.P.: On the pointwise and the integral convergence of recursive kernel estimates of probability densities. Utilitas Math. (Canada) 15, 113\u2013128 (1979)","journal-title":"Utilitas Math. (Canada)"},{"issue":"4","key":"65_CR7","doi-asserted-by":"publisher","first-page":"12","DOI":"10.1109\/MCI.2015.2471196","volume":"10","author":"G Ditzler","year":"2015","unstructured":"Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comput. Intell. Mag. 10(4), 12\u201325 (2015)","journal-title":"IEEE Comput. Intell. Mag."},{"key":"65_CR8","doi-asserted-by":"crossref","unstructured":"Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71\u201380 (2000)","DOI":"10.1145\/347090.347107"},{"key":"65_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1007\/978-3-642-29347-4_6","volume-title":"Artificial Intelligence and Soft Computing","author":"P Duda","year":"2012","unstructured":"Duda, P., Hayashi, Y., Jaworski, M.: On the strong convergence of the orthogonal series-type kernel regression neural networks in a non-stationary environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7267, pp. 47\u201354. Springer, Heidelberg (2012). doi:10.1007\/978-3-642-29347-4_6"},{"key":"65_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1007\/978-3-642-29350-4_7","volume-title":"Artificial Intelligence and Soft Computing","author":"P Duda","year":"2012","unstructured":"Duda, P., Jaworski, M., Pietruczuk, L.: On pre-processing algorithms for data stream. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7268, pp. 56\u201363. Springer, Heidelberg (2012). doi:10.1007\/978-3-642-29350-4_7"},{"key":"65_CR11","doi-asserted-by":"publisher","first-page":"68","DOI":"10.3844\/jmssp.2010.68.71","volume":"6","author":"P Ellis","year":"2010","unstructured":"Ellis, P.: The time-dependent mean and variance of the non-stationary Markovian infinite server system. J. Math. Stat. 6, 68\u201371 (2010)","journal-title":"J. Math. Stat."},{"issue":"1","key":"65_CR12","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1137\/1114019","volume":"14","author":"VA Epanechnikov","year":"1969","unstructured":"Epanechnikov, V.A.: Non-parametric estimation of a multivariate probability density. Theory Probab. Appl. 14(1), 153\u2013158 (1969)","journal-title":"Theory Probab. Appl."},{"key":"65_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"443","DOI":"10.1007\/978-3-642-31464-3_45","volume-title":"Parallel Processing and Applied Mathematics","author":"MJ Er","year":"2012","unstructured":"Er, M.J., Duda, P.: On the weak convergence of the orthogonal series-type kernel regresion neural networks in a non-stationary environment. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wa\u015bniewski, J. (eds.) PPAM 2011. LNCS, vol. 7203, pp. 443\u2013450. Springer, Heidelberg (2012). doi:10.1007\/978-3-642-31464-3_45"},{"issue":"5","key":"65_CR14","doi-asserted-by":"publisher","first-page":"942","DOI":"10.1109\/PROC.1985.13223","volume":"73","author":"T Galkowski","year":"1985","unstructured":"Galkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions with applications to system identification. Proc. IEEE 73(5), 942\u2013943 (1985)","journal-title":"Proc. IEEE"},{"issue":"8","key":"65_CR15","doi-asserted-by":"publisher","first-page":"785","DOI":"10.1109\/TAC.1986.1104399","volume":"31","author":"T Galkowski","year":"1986","unstructured":"Galkowski, T., Rutkowski, L.: Nonparametric fitting of multivariate functions. IEEE Trans. Autom. Control 31(8), 785\u2013787 (1986)","journal-title":"IEEE Trans. Autom. Control"},{"key":"65_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"158","DOI":"10.1007\/978-3-642-38610-7_15","volume-title":"Artificial Intelligence and Soft Computing","author":"T Ga\u0142kowski","year":"2013","unstructured":"Ga\u0142kowski, T.: Kernel estimation of regression functions in the boundary regions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7895, pp. 158\u2013166. Springer, Heidelberg (2013). doi:10.1007\/978-3-642-38610-7_15"},{"key":"65_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"518","DOI":"10.1007\/978-3-319-07173-2_44","volume-title":"Artificial Intelligence and Soft Computing","author":"T Galkowski","year":"2014","unstructured":"Galkowski, T., Pawlak, M.: Nonparametric extension of regression functions outside domain. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8467, pp. 518\u2013530. Springer, Cham (2014). doi:10.1007\/978-3-319-07173-2_44"},{"key":"65_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"531","DOI":"10.1007\/978-3-319-07173-2_45","volume-title":"Artificial Intelligence and Soft Computing","author":"T Galkowski","year":"2014","unstructured":"Galkowski, T., Pawlak, M.: Nonparametric function fitting in the presence of nonstationary noise. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8467, pp. 531\u2013538. Springer, Cham (2014). doi:10.1007\/978-3-319-07173-2_45"},{"key":"65_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"427","DOI":"10.1007\/978-3-319-19324-3_39","volume-title":"Artificial Intelligence and Soft Computing","author":"T Galkowski","year":"2015","unstructured":"Galkowski, T., Pawlak, M.: Orthogonal series estimation of regression functions in nonstationary conditions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9119, pp. 427\u2013435. Springer, Cham (2015). doi:10.1007\/978-3-319-19324-3_39"},{"key":"65_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1007\/978-3-319-39384-1_5","volume-title":"Artificial Intelligence and Soft Computing","author":"T Galkowski","year":"2016","unstructured":"Galkowski, T., Pawlak, M.: Nonparametric estimation of edge values of regression functions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 49\u201359. Springer, Cham (2016). doi:10.1007\/978-3-319-39384-1_5"},{"issue":"4","key":"65_CR21","doi-asserted-by":"publisher","first-page":"44","DOI":"10.1145\/2523813","volume":"46","author":"J Gama","year":"2014","unstructured":"Gama, J., \u017dliobait\u0117, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"65_CR22","doi-asserted-by":"publisher","first-page":"1570","DOI":"10.1214\/aos\/1176346815","volume":"12","author":"W Greblicki","year":"1984","unstructured":"Greblicki, W., Krzyzak, A., Pawlak, M.: Distribution-free pointwise consistency of kernel regression estimate. Ann. Stat. 12, 1570\u20131575 (1984)","journal-title":"Ann. Stat."},{"issue":"1","key":"65_CR23","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1016\/0047-259X(87)90178-3","volume":"23","author":"W Greblicki","year":"1987","unstructured":"Greblicki, W., Pawlak, M.: Necessary and sufficient consistency conditions for a recursive kernel regression estimate. J. Multivar. Anal. 23(1), 67\u201376 (1987)","journal-title":"J. Multivar. Anal."},{"key":"65_CR24","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511536687","volume-title":"Nonparametric System Identification","author":"W Greblicki","year":"2008","unstructured":"Greblicki, W., Pawlak, M.: Nonparametric System Identification. Cambridge University Press, Cambridge (2008)"},{"key":"65_CR25","volume-title":"A Distribution-free Theory of Nonparametric Regression","author":"L Gy\u00f6rfi","year":"2006","unstructured":"Gy\u00f6rfi, L., Kohler, M., Krzyzak, A., Walk, H.: A Distribution-free Theory of Nonparametric Regression. Springer Science & Business Media, New York (2006)"},{"key":"65_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1007\/978-3-642-29347-4_11","volume-title":"Artificial Intelligence and Soft Computing","author":"M Jaworski","year":"2012","unstructured":"Jaworski, M., Er, M.J., Pietruczuk, L.: On the application of the parzen-type kernel regression neural network and order statistics for learning in a non-stationary environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7267, pp. 90\u201398. Springer, Heidelberg (2012). doi:10.1007\/978-3-642-29347-4_11"},{"key":"65_CR27","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"92","DOI":"10.1007\/978-3-642-29350-4_11","volume-title":"Artificial Intelligence and Soft Computing","author":"M Jaworski","year":"2012","unstructured":"Jaworski, M., Pietruczuk, L., Duda, P.: On resources optimization in fuzzy clustering of data streams. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7268, pp. 92\u201399. Springer, Heidelberg (2012). doi:10.1007\/978-3-642-29350-4_11"},{"issue":"1","key":"65_CR28","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1109\/TIT.1984.1056833","volume":"30","author":"A Krzyzak","year":"1984","unstructured":"Krzyzak, A., Pawlak, M.: Almost everywhere convergence of a recursive regression function estimate and classification. IEEE Trans. Inf. Theory 30(1), 91\u201393 (1984)","journal-title":"IEEE Trans. Inf. Theory"},{"key":"65_CR29","doi-asserted-by":"publisher","first-page":"159","DOI":"10.1016\/0378-3758(87)90065-6","volume":"16","author":"A Krzyzak","year":"1987","unstructured":"Krzyzak, A., Pawlak, M.: The pointwise rate of convergence of the kernel regression estimate. J. Stat. Plann. Infer. 16, 159\u2013166 (1987)","journal-title":"J. Stat. Plann. Infer."},{"issue":"2","key":"65_CR30","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1515\/jaiscr-2016-0007","volume":"6","author":"V Nikulin","year":"2016","unstructured":"Nikulin, V.: Prediction of the shoppers loyalty with aggregated data streams. J. Artif. Intell. Soft Comput. Res. 6(2), 69\u201379 (2016)","journal-title":"J. Artif. Intell. Soft Comput. Res."},{"key":"65_CR31","doi-asserted-by":"publisher","first-page":"1065","DOI":"10.1214\/aoms\/1177704472","volume":"33","author":"E Parzen","year":"1962","unstructured":"Parzen, E.: On estimation of probability density function and mode. Ann. Math. Stat. 33, 1065\u20131076 (1962)","journal-title":"Ann. Math. Stat."},{"key":"65_CR32","doi-asserted-by":"crossref","unstructured":"Pietruczuk, L., Rutkowski, L., Jaworski, M., Duda, P.: The Parzen kernel approach to learning in non-stationary environment. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 3319\u20133323 (2014)","DOI":"10.1109\/IJCNN.2014.6889805"},{"key":"65_CR33","doi-asserted-by":"crossref","unstructured":"Pietruczuk, L., Rutkowski, L., Jaworski, M., Duda, P.: A method for automatic adjustment of ensemble size in stream data mining. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 9\u201315 (2016)","DOI":"10.1109\/IJCNN.2016.7727174"},{"key":"65_CR34","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"459","DOI":"10.1007\/978-3-642-38658-9_41","volume-title":"Artificial Intelligence and Soft Computing","author":"L Pietruczuk","year":"2013","unstructured":"Pietruczuk, L., Duda, P., Jaworski, M.: Adaptation of decision trees for handling concept drift. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7894, pp. 459\u2013473. Springer, Heidelberg (2013). doi:10.1007\/978-3-642-38658-9_41"},{"key":"65_CR35","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1016\/j.ins.2016.10.028","volume":"381","author":"L Pietruczuk","year":"2017","unstructured":"Pietruczuk, L., Rutkowski, L., Jaworski, M., Duda, P.: How to adjust an ensemble size in stream data mining? Inf. Sci. 381, 46\u201354 (2017)","journal-title":"Inf. Sci."},{"key":"65_CR36","volume-title":"Nonparametric Functional Estimation","author":"BP Rao","year":"2014","unstructured":"Rao, B.P.: Nonparametric Functional Estimation. Academic Press, Orlando (2014)"},{"key":"65_CR37","doi-asserted-by":"publisher","first-page":"576","DOI":"10.1109\/TNN.2004.826127","volume":"15","author":"L Rutkowski","year":"2004","unstructured":"Rutkowski, L.: Generalized regression neural networks in time-varying environment. IEEE Trans. Neural Netw. 15, 576\u2013596 (2004)","journal-title":"IEEE Trans. Neural Netw."},{"key":"65_CR38","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.ins.2013.12.060","volume":"266","author":"L Rutkowski","year":"2014","unstructured":"Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Inf. Sci. 266, 1\u201315 (2014)","journal-title":"Inf. Sci."},{"issue":"1","key":"65_CR39","doi-asserted-by":"publisher","first-page":"108","DOI":"10.1109\/TKDE.2013.34","volume":"26","author":"L Rutkowski","year":"2014","unstructured":"Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the Gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108\u2013119 (2014)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"5","key":"65_CR40","doi-asserted-by":"publisher","first-page":"1048","DOI":"10.1109\/TNNLS.2014.2333557","volume":"26","author":"L Rutkowski","year":"2015","unstructured":"Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: A new method for data stream mining based on the misclassification error. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 1048\u20131059 (2015)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"6","key":"65_CR41","doi-asserted-by":"publisher","first-page":"1272","DOI":"10.1109\/TKDE.2012.66","volume":"25","author":"L Rutkowski","year":"2013","unstructured":"Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmid\u2019s bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272\u20131279 (2013)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"1","key":"65_CR42","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1515\/jaiscr-2016-0003","volume":"6","author":"AM Serdah","year":"2016","unstructured":"Serdah, A.M., Ashour, W.M.: Clustering large-scale data based on modified affinity propagation algorithm. J. Artif. Intell. Soft Comput. Res. 6(1), 23\u201333 (2016)","journal-title":"J. Artif. Intell. Soft Comput. Res."},{"issue":"1","key":"65_CR43","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1016\/0893-6080(90)90049-Q","volume":"3","author":"DF Specht","year":"1990","unstructured":"Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109\u2013118 (1990)","journal-title":"Neural Netw."},{"issue":"1","key":"65_CR44","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1109\/72.80210","volume":"1","author":"DF Specht","year":"1990","unstructured":"Specht, D.F.: Probabilistic neural networks and the polynomial adaline as complementary techniques for classification. IEEE Trans. Neural Netw. 1(1), 111\u2013121 (1990)","journal-title":"IEEE Trans. Neural Netw."},{"issue":"6","key":"65_CR45","doi-asserted-by":"publisher","first-page":"568","DOI":"10.1109\/72.97934","volume":"2","author":"DF Specht","year":"1991","unstructured":"Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2(6), 568\u2013576 (1991)","journal-title":"IEEE Trans. Neural Netw."},{"issue":"12","key":"65_CR46","doi-asserted-by":"publisher","first-page":"1327","DOI":"10.1016\/j.compbiomed.2005.10.001","volume":"36","author":"KFK Wong","year":"2006","unstructured":"Wong, K.F.K., Galka, A., Yamashita, O., Ozaki, T.: Modelling non-stationary variance in eeg time series by state space garch model. Comput. Biol. Med. 36(12), 1327\u20131335 (2006)","journal-title":"Comput. Biol. Med."},{"issue":"1","key":"65_CR47","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1109\/TNNLS.2012.2236570","volume":"25","author":"I Zliobaite","year":"2014","unstructured":"Zliobaite, I., Bifet, A., Pfahringer, B., Holmes, G.: Active learning with drifting streaming data. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 27\u201339 (2014)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."}],"container-title":["Lecture Notes in Computer Science","Artificial Intelligence and Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-59060-8_65","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T15:23:11Z","timestamp":1710343391000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-59060-8_65"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"ISBN":["9783319590592","9783319590608"],"references-count":47,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-59060-8_65","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2017]]},"assertion":[{"value":"24 May 2017","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICAISC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Intelligence and Soft Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Zakopane","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Poland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2017","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 June 2017","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 June 2017","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icaisc2017","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.icaisc.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}