{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T13:15:49Z","timestamp":1725887749343},"publisher-location":"Cham","reference-count":23,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319588377"},{"type":"electronic","value":"9783319588384"}],"license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017]]},"DOI":"10.1007\/978-3-319-58838-4_2","type":"book-chapter","created":{"date-parts":[[2017,5,11]],"date-time":"2017-05-11T15:54:08Z","timestamp":1494518048000},"page":"13-21","source":"Crossref","is-referenced-by-count":3,"title":["Performance Metrics for Model Fusion in\u00a0Twitter Data Drifts"],"prefix":"10.1007","author":[{"given":"Joana","family":"Costa","sequence":"first","affiliation":[]},{"given":"Catarina","family":"Silva","sequence":"additional","affiliation":[]},{"given":"M\u00e1rio","family":"Antunes","sequence":"additional","affiliation":[]},{"given":"Bernardete","family":"Ribeiro","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,5,12]]},"reference":[{"issue":"1","key":"2_CR1","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1006\/jcss.1997.1504","volume":"55","author":"Y Freund","year":"1997","unstructured":"Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119\u2013139 (1997)","journal-title":"J. Comput. Syst. Sci."},{"issue":"2","key":"2_CR2","first-page":"123","volume":"24","author":"L Breiman","year":"1996","unstructured":"Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123\u2013140 (1996)","journal-title":"Mach. Learn."},{"issue":"1","key":"2_CR3","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45(1), 5\u201332 (2001)","journal-title":"Mach. Learn."},{"issue":"1","key":"2_CR4","first-page":"28","volume":"5","author":"RD Bagul","year":"2016","unstructured":"Bagul, R.D., Phulpagar, B.D.: Survey on approaches, problems and applications of ensemble of classifiers. Int. J. Emerg. Trends Technol. Comput. Sci. 5(1), 28\u201330 (2016)","journal-title":"Int. J. Emerg. Trends Technol. Comput. Sci."},{"issue":"10","key":"2_CR5","doi-asserted-by":"crossref","first-page":"2283","DOI":"10.1109\/TKDE.2012.136","volume":"25","author":"G Ditzler","year":"2013","unstructured":"Ditzler, G., Polikar, R.: Incremental learning of concept drift from streaming imbalanced data. IEEE Trans. Knowl. Data Eng. 25(10), 2283\u20132301 (2013)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"2_CR6","unstructured":"Tabassum, N., Ahmed, T.: A theoretical study on classifier ensemble methods and its applications. In: 3rd International Conference on Computing for Sustainable Global Development, pp. 67\u201378 (2016)"},{"issue":"1","key":"2_CR7","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1109\/MCI.2015.2471235","volume":"1","author":"Y Ren","year":"2016","unstructured":"Ren, Y., Zhang, L., Suganthan, P.N.: Ensemble classification and regression - recent developments, applications and future directions. IEEE Comput. Intell. Mag. 1(1), 41\u201343 (2016)","journal-title":"IEEE Comput. Intell. Mag."},{"key":"2_CR8","doi-asserted-by":"crossref","unstructured":"Ponti Jr., M.P.: Combining classifiers: from the creation of ensembles to the decision fusion. In: 24th Conference on Graphics, Patterns and Images, pp. 1\u201310 (2011)","DOI":"10.1109\/SIBGRAPI-T.2011.9"},{"issue":"2","key":"2_CR9","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1007\/s10462-015-9444-8","volume":"45","author":"E Faria","year":"2016","unstructured":"Faria, E., de Carvalho, A., Gon\u00e7alves, I., Gama, J.: Novelty detection in data streams. Artif. Intell. Rev. 45(2), 235\u2013269 (2016)","journal-title":"Artif. Intell. Rev."},{"issue":"2","key":"2_CR10","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1109\/34.982906","volume":"24","author":"L Kuncheva","year":"2002","unstructured":"Kuncheva, L.: A theoretical study on six classifier fusion strategies. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 281\u2013286 (2002)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"2_CR11","doi-asserted-by":"crossref","first-page":"1517","DOI":"10.1109\/TNN.2011.2160459","volume":"22","author":"R Elwell","year":"2011","unstructured":"Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Netw. 22, 1517\u20131531 (2011)","journal-title":"IEEE Trans. Neural Netw."},{"key":"2_CR12","doi-asserted-by":"crossref","unstructured":"Karnick, M., Muhlbaier, M.D., Polikar, R.: Incremental learning in non-stationary environments with concept drift using a multiple classifier based approach. In: International Conference on Pattern Recognition, pp. 1\u20134 (2008)","DOI":"10.1109\/ICPR.2008.4761062"},{"key":"2_CR13","first-page":"23","volume":"173","author":"S Johnson","year":"2009","unstructured":"Johnson, S.: How Twitter will change the way we live. Time Mag. 173, 23\u201332 (2009)","journal-title":"Time Mag."},{"key":"2_CR14","doi-asserted-by":"crossref","unstructured":"Tsur, O., Rappoport, A.: What\u2019s in a hashtag?: content based prediction of the spread of ideas in microblogging communities. In: Proceedings of the 5th International Conference on Web Search and Data Mining, pp. 643\u2013652 (2012)","DOI":"10.1145\/2124295.2124320"},{"key":"2_CR15","doi-asserted-by":"crossref","unstructured":"Yang, L., Sun, T., Zhang, M., Mei, Q.: We know what @you #tag: does the dual role affect hashtag adoption? In: Proceedings of the 21st International Conference on World Wide Web, pp. 261\u2013270 (2012)","DOI":"10.1145\/2187836.2187872"},{"key":"2_CR16","doi-asserted-by":"crossref","unstructured":"Chang, H.-C.: A new perspective on Twitter hashtag use: diffusion of innovation theory. In: Proceedings of the 73rd Annual Meeting on Navigating Streams in an Information Ecosystem, pp. 85:1\u201385:4 (2010)","DOI":"10.1002\/meet.14504701295"},{"key":"2_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"226","DOI":"10.1007\/978-3-642-37213-1_24","volume-title":"Adaptive and Natural Computing Algorithms","author":"J Costa","year":"2013","unstructured":"Costa, J., Silva, C., Antunes, M., Ribeiro, B.: Defining semantic meta-hashtags for Twitter classification. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) ICANNGA 2013. LNCS, vol. 7824, pp. 226\u2013235. Springer, Heidelberg (2013). doi:\n10.1007\/978-3-642-37213-1_24"},{"key":"2_CR18","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1007\/978-3-319-44188-7_3","volume-title":"Engineering Applications of Neural Networks","author":"J Costa","year":"2016","unstructured":"Costa, J., Silva, C., Antunes, M., Ribeiro, B.: Choice of best samples for building ensembles in dynamic environments. In: Jayne, C., Iliadis, L. (eds.) EANN 2016. CCIS, vol. 629, pp. 35\u201347. Springer, Cham (2016). doi:\n10.1007\/978-3-319-44188-7_3"},{"key":"2_CR19","doi-asserted-by":"crossref","unstructured":"Costa, J., Silva, C., Antunes, M., Ribeiro, B.: The impact of longstanding messages in micro-blogging classification. In: International Joint Conference on Neural Networks (IJCNN), pp. 1\u20138 (2015)","DOI":"10.1109\/IJCNN.2015.7280731"},{"key":"2_CR20","doi-asserted-by":"crossref","unstructured":"Costa, J., Silva, C., Antunes, M., Ribeiro, B.: Concept drift awareness in Twitter streams. In: Proceedings of the 13th International Conference on Machine Learning and Applications, pp. 294\u2013299 (2014)","DOI":"10.1109\/ICMLA.2014.53"},{"issue":"4","key":"2_CR21","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1016\/j.ipm.2009.03.002","volume":"45","author":"M Sokolova","year":"2009","unstructured":"Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45(4), 427\u2013437 (2009)","journal-title":"Inf. Process. Manage."},{"key":"2_CR22","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"615","DOI":"10.1007\/978-3-319-26561-2_72","volume-title":"Neural Information Processing","author":"J Costa","year":"2015","unstructured":"Costa, J., Silva, C., Antunes, M., Ribeiro, B.: DOTS: drift oriented tool system. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9492, pp. 615\u2013623. Springer, Cham (2015). doi:\n10.1007\/978-3-319-26561-2_72"},{"key":"2_CR23","volume-title":"The Nature of Statistical Learning Theory","author":"V Vapnik","year":"1999","unstructured":"Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1999)"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Image Analysis"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-58838-4_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2017,5,11]],"date-time":"2017-05-11T15:54:50Z","timestamp":1494518090000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-58838-4_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"ISBN":["9783319588377","9783319588384"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-58838-4_2","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2017]]}}}