{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T19:11:23Z","timestamp":1725909083672},"publisher-location":"Cham","reference-count":10,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319569901"},{"type":"electronic","value":"9783319569918"}],"license":[{"start":{"date-parts":[[2017,8,23]],"date-time":"2017-08-23T00:00:00Z","timestamp":1503446400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-319-56991-8_36","type":"book-chapter","created":{"date-parts":[[2017,8,22]],"date-time":"2017-08-22T03:57:16Z","timestamp":1503374236000},"page":"477-485","source":"Crossref","is-referenced-by-count":0,"title":["Initialising Deep Neural Networks: An Approach Based on Linear Interval Tolerance"],"prefix":"10.1007","author":[{"given":"Cosmin","family":"Stamate","sequence":"first","affiliation":[]},{"given":"George D.","family":"Magoulas","sequence":"additional","affiliation":[]},{"given":"Michael S. C.","family":"Thomas","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,8,23]]},"reference":[{"key":"36_CR1","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.neunet.2014.02.006","volume":"54","author":"SP Adam","year":"2014","unstructured":"Adam, S.P., Karras, D.A., Magoulas, G.D., Vrahatis, M.N.: Solving the linear interval tolerance problem for weight initialization of neural networks. Neural Netw. 54, 17\u201337 (2014)","journal-title":"Neural Netw."},{"key":"36_CR2","doi-asserted-by":"crossref","unstructured":"Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems, vol. 19. MIT Press, Cambridge, MA (2007)","DOI":"10.7551\/mitpress\/7503.003.0024"},{"issue":"1","key":"36_CR3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000006","volume":"2","author":"Y Bengio","year":"2009","unstructured":"Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1\u2013127 (2009). Also published as a book. Now Publishers (2009)","journal-title":"Found. Trends Mach. Learn."},{"key":"36_CR4","unstructured":"Dauphin, Y.N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., Bengio, Y.: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In: NIPS, pp. 2933\u20132941 (2014)"},{"key":"36_CR5","unstructured":"Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS. JMLR Proceedings, vol. 9, pp. 249\u2013256. JMLR.org (2010)"},{"key":"36_CR6","doi-asserted-by":"crossref","first-page":"1527","DOI":"10.1162\/neco.2006.18.7.1527","volume":"18","author":"GE Hinton","year":"2006","unstructured":"Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527\u20131554 (2006)","journal-title":"Neural Comput."},{"key":"36_CR7","unstructured":"Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Master\u2019s thesis, Department of Computer Science, University of Toronto (2009)"},{"key":"36_CR8","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y Lecun","year":"1998","unstructured":"Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278\u20132324 (1998)","journal-title":"Proc. IEEE"},{"issue":"7","key":"36_CR9","doi-asserted-by":"crossref","first-page":"4545","DOI":"10.1016\/S0362-546X(96)00369-0","volume":"30","author":"GD Magoulast","year":"1997","unstructured":"Magoulast, G.D., Vrahatis, M.N., Androulakis, G.S.: On the alleviation of the problem of local minima in back-propagation. Nonlinear Anal.: Theory, Methods Appl. 30(7), 4545\u20134550 (1997)","journal-title":"Nonlinear Anal.: Theory, Methods Appl."},{"key":"36_CR10","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","volume":"61","author":"J Schmidhuber","year":"2015","unstructured":"Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85\u2013117 (2015)","journal-title":"Neural Netw."}],"container-title":["Lecture Notes in Networks and Systems","Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-56991-8_36","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,25]],"date-time":"2023-08-25T05:16:53Z","timestamp":1692940613000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-56991-8_36"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,8,23]]},"ISBN":["9783319569901","9783319569918"],"references-count":10,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-56991-8_36","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2017,8,23]]}}}