{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T19:28:05Z","timestamp":1725910085636},"publisher-location":"Cham","reference-count":26,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319569031"},{"type":"electronic","value":"9783319569048"}],"license":[{"start":{"date-parts":[[2017,8,30]],"date-time":"2017-08-30T00:00:00Z","timestamp":1504051200000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2017,8,30]],"date-time":"2017-08-30T00:00:00Z","timestamp":1504051200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-319-56904-8_3","type":"book-chapter","created":{"date-parts":[[2017,8,29]],"date-time":"2017-08-29T04:22:49Z","timestamp":1503980569000},"page":"23-37","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["Fully Automatic Multispectral MR Image Segmentation of Prostate Gland Based on the Fuzzy C-Means Clustering Algorithm"],"prefix":"10.1007","author":[{"given":"Leonardo","family":"Rundo","sequence":"first","affiliation":[]},{"given":"Carmelo","family":"Militello","sequence":"additional","affiliation":[]},{"given":"Giorgio","family":"Russo","sequence":"additional","affiliation":[]},{"given":"Davide","family":"D\u2019Urso","sequence":"additional","affiliation":[]},{"given":"Lucia Maria","family":"Valastro","sequence":"additional","affiliation":[]},{"given":"Antonio","family":"Garufi","sequence":"additional","affiliation":[]},{"given":"Giancarlo","family":"Mauri","sequence":"additional","affiliation":[]},{"given":"Salvatore","family":"Vitabile","sequence":"additional","affiliation":[]},{"given":"Maria Carla","family":"Gilardi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,8,30]]},"reference":[{"key":"3_CR1","doi-asserted-by":"publisher","unstructured":"Klein, S., van der Heide, U.A., Lips, I.M., van Vulpen, M., Staring, M., Pluim, J.P.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med. Phys. 35(4), 1407\u20131417 (2008). doi:\n 10.1118\/1.2842076","DOI":"10.1118\/1.2842076"},{"key":"3_CR2","doi-asserted-by":"publisher","unstructured":"Rouvi\u00e8re, O., Lyonnet, D., Raudrant, A., Colin-Pangaud, C., Chapelon, J.Y., Bouvier, R., Dubernard, J.M., Gelet, A.: MRI appearance of prostate following transrectal HIFU ablation of localized cancer. Eur. Urol. 40, 265\u2013274 (2001). doi:\n 10.1159\/000049786","DOI":"10.1159\/000049786"},{"key":"3_CR3","doi-asserted-by":"publisher","unstructured":"Villeirs, G.M., De Meerleer, G.O.: Magnetic resonance imaging (MRI) anatomy of the prostate and application of MRI in radiotherapy planning. Eur. J. Radiol. 63(3), 361\u2013368 (2007). doi:\n 10.1016\/j.ejrad.2007.06.030","DOI":"10.1016\/j.ejrad.2007.06.030"},{"key":"3_CR4","doi-asserted-by":"publisher","unstructured":"Ghose, S., Oliver, A., Mart\u00ed, R., Llad\u00f3, X., Vilanova, J.C., Freixenet, J., Mitra, J., Sidib\u00e9, D., Meriaudeau, F.: A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Comput. Meth. Prog. Bio. 108(1), 262\u2013287 (2012). doi:\n 10.1016\/j.cmpb.2012.04.006","DOI":"10.1016\/j.cmpb.2012.04.006"},{"key":"3_CR5","doi-asserted-by":"publisher","unstructured":"Chilali, O., Ouzzane, A., Diaf, M., Betrouni, N.: A survey of prostate modeling for image analysis. Comput. Biol. Med. 53, 190\u2013202 (2014). doi:\n 10.1016\/j.compbiomed.2014.07.019","DOI":"10.1016\/j.compbiomed.2014.07.019"},{"key":"3_CR6","doi-asserted-by":"publisher","unstructured":"Lema\u00eetre, G., Mart\u00ed, R., Freixenet, J., Vilanova, J.C., Walker, P.M., Meriaudeau, F.: Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review. Comput. Biol. Med. 60, 8\u201331 (2015). doi:\n 10.1016\/j.compbiomed.2015.02.009","DOI":"10.1016\/j.compbiomed.2015.02.009"},{"key":"3_CR7","doi-asserted-by":"publisher","unstructured":"Rosenkrantz, A.B., Lim, R.P., Haghighi, M., Somberg, M.B., Babb, J.S., Taneja, S.S.: Comparison of interreader reproducibility of the prostate imaging reporting and data system and likert scales for evaluation of multiparametric prostate MRI. Am. J. Roentgenol. 201(4), W612\u2013W618 (2013). doi:\n 10.2214\/AJR.12.10173","DOI":"10.2214\/AJR.12.10173"},{"issue":"6","key":"3_CR8","doi-asserted-by":"publisher","first-page":"606","DOI":"10.1111\/j.1754-9485.2012.02449.x","volume":"56","author":"R Caivano","year":"2012","unstructured":"Caivano, R., Cirillo, P., Balestra, A., Lotumolo, A., Fortunato, G., Macarini, L., Zandolino, A., Vita, G., Cammarota, A.: Prostate cancer in magnetic resonance imaging: diagnostic utilities of spectroscopic sequences. J. Med. Imag. Radiat. On. 56(6), 606\u2013616 (2012). doi:\n 10.1111\/j.1754-9485.2012.02449.x","journal-title":"J. Med. Imag. Radiat. On."},{"issue":"2","key":"3_CR9","doi-asserted-by":"publisher","first-page":"276","DOI":"10.1007\/s00330-005-2893-8","volume":"16","author":"O Rouvi\u00e8re","year":"2006","unstructured":"Rouvi\u00e8re, O., Hartman, R.P., Lyonnet, D.: Prostate MR imaging at high-field strength: Evolution or revolution? Eur. Radiol. 16(2), 276\u2013284 (2006). doi:\n 10.1007\/s00330-005-2893-8","journal-title":"Eur. Radiol."},{"key":"3_CR10","unstructured":"Vincent, G., Guillard, G., Bowes, M.: Fully automatic segmentation of the prostate using active appearance models. In: Medical Image Computing and Computer Assisted Intervention (MICCAI) Grand Challenge: Prostate MR Image Segmentation 2012, Nice, France, 7 p. (2012)"},{"issue":"2","key":"3_CR11","doi-asserted-by":"publisher","first-page":"359","DOI":"10.1016\/j.media.2013.12.002","volume":"18","author":"G Litjens","year":"2014","unstructured":"Litjens, G., Toth, R., van de Ven, W., Hoeks, C., Kerkstra, S., van Ginneken, B., et al.: Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Med. Image Anal. 18(2), 359\u2013373 (2014). doi:\n 10.1016\/j.media.2013.12.002","journal-title":"Med. Image Anal."},{"key":"3_CR12","doi-asserted-by":"publisher","unstructured":"Litjens, G., Debats, O., van de Ven, W., Karssemeijer, N., Huisman, H.: A pattern recognition approach to zonal segmentation of the prostate on MRI. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), p. 413\u2013420. Springer, Berlin Heidelberg. (2012). doi:\n 10.1007\/978-3-642-33418-4_51","DOI":"10.1007\/978-3-642-33418-4_51"},{"issue":"10","key":"3_CR13","doi-asserted-by":"publisher","first-page":"1781","DOI":"10.1109\/TMI.2010.2052065","volume":"29","author":"Y Gao","year":"2010","unstructured":"Gao, Y., Sandhu, R., Fichtinger, G., Tannenbaum, A.R.: A coupled global registration and segmentation framework with application to magnetic resonance prostate imagery. IEEE T. Med. Imaging 29(10), 1781\u20131794 (2010). doi:\n 10.1109\/TMI.2010.2052065","journal-title":"IEEE T. Med. Imaging"},{"issue":"6","key":"3_CR14","doi-asserted-by":"publisher","first-page":"485","DOI":"10.1007\/s11548-008-0247-0","volume":"3","author":"S Martin","year":"2008","unstructured":"Martin, S., Daanen, V., Troccaz, J.: Atlas-based prostate segmentation using an hybrid registration. Int. J. Comput. Assist. Radiol. Surg. 3(6), 485\u2013492 (2008). doi:\n 10.1007\/s11548-008-0247-0","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"issue":"4","key":"3_CR15","doi-asserted-by":"publisher","first-page":"1579","DOI":"10.1118\/1.3315367","volume":"37","author":"S Martin","year":"2010","unstructured":"Martin, S., Troccaz, J., Daanen, V.: Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model. Med. Phys. 37(4), 1579\u20131590 (2010). doi:\n 10.1118\/1.3315367","journal-title":"Med. Phys."},{"issue":"1","key":"3_CR16","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1148\/rg.271065078","volume":"27","author":"YJ Choi","year":"2007","unstructured":"Choi, Y.J., Kim, J.K., Kim, N., Kim, K.W., Choi, E.K., Cho, K.S.: Functional MR imaging of prostate cancer. Radiographics 27(1), 63\u201375 (2007). doi:\n 10.1148\/rg.271065078","journal-title":"Radiographics"},{"issue":"8","key":"3_CR17","doi-asserted-by":"publisher","first-page":"986","DOI":"10.1109\/TMI.2003.815867","volume":"22","author":"JPW Pluim","year":"2003","unstructured":"Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual-information-based registration of medical images: a survey. IEEE T. Med. Imaging 22(8), 986\u20131004 (2003). doi:\n 10.1109\/TMI.2003.815867","journal-title":"IEEE T. Med. Imaging"},{"key":"3_CR18","doi-asserted-by":"publisher","unstructured":"Mattes, D., Haynor, D.R., Vesselle, H., Lewellen, T., Eubank, W.: Non-rigid multimodality image registration. In: Medical Imaging 2001: Image Processing, 1609, Proceedings of SPIE 4322, pp. 1609\u20131620 (2001). doi:\n 10.1117\/12.431046","DOI":"10.1117\/12.431046"},{"issue":"3","key":"3_CR19","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1109\/42.845174","volume":"19","author":"M Styner","year":"2000","unstructured":"Styner, M., Brechbuhler, C., Szckely, G., Gerig, G.: Parametric estimate of intensity inhomogeneities applied to MRI. IEEE T. Med. Imaging 19(3), 153\u2013165 (2000). doi:\n 10.1109\/42.845174","journal-title":"IEEE T. Med. Imaging"},{"issue":"12","key":"3_CR20","doi-asserted-by":"publisher","first-page":"1700","DOI":"10.1109\/83.730381","volume":"7","author":"RN Czerwinski","year":"1998","unstructured":"Czerwinski, R.N., Jones, D.L., O\u2019Brien, W.D.: Line and boundary detection in speckle images. IEEE T. Image Process. 7(12), 1700\u20131714 (1998). doi:\n 10.1109\/83.730381","journal-title":"IEEE T. Image Process."},{"key":"3_CR21","doi-asserted-by":"publisher","unstructured":"Xiao, C.Y., Zhang, S., Cheng, S., Chen, Y.Z.: A novel method for speckle reduction and edge enhancement in ultrasonic images. In: Electronic Imaging and Multimedia Technology IV, 469. Proceedings of SPIE 5637, 28 February, 2005. doi:\n 10.1117\/12.575389","DOI":"10.1117\/12.575389"},{"key":"3_CR22","doi-asserted-by":"publisher","first-page":"R349","DOI":"10.1088\/0031-9155\/59\/21\/R349","volume":"59","author":"JJW Lagendijk","year":"2014","unstructured":"Lagendijk, J.J.W., Raaymakers, B.W., Van den Berg, C.A.T., Moerland, M.A., Philippens, M.E., van Vulpen, M.: MR guidance in radiotherapy. Phys. Med. Biol. 59, R349\u2013R369 (2014). doi:\n 10.1088\/0031-9155\/59\/21\/R349","journal-title":"Phys. Med. Biol."},{"issue":"2","key":"3_CR23","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1016\/0098-3004(84)90020-7","volume":"10","author":"JC Bezdek","year":"1984","unstructured":"Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The fuzzy C-means clustering algorithm. Comput. Geosci. 10(2), 191\u2013203 (1984). doi:\n 10.1016\/0098-3004(84)90020-7","journal-title":"Comput. Geosci."},{"key":"3_CR24","doi-asserted-by":"publisher","first-page":"277","DOI":"10.1016\/j.compbiomed.2015.04.030","volume":"62","author":"C Militello","year":"2015","unstructured":"Militello, C., Vitabile, S., Rundo, L., Russo, G., Midiri, M., Gilardi, M.C.: A fully automatic 2D segmentation method for uterine fibroid in MRgFUS treatment evaluation. Comput. Biol. Med. 62, 277\u2013292 (2015). doi:\n 10.1016\/j.compbiomed.2015.04.030","journal-title":"Comput. Biol. Med."},{"key":"3_CR25","doi-asserted-by":"publisher","unstructured":"Fenster, A., Chiu, B.: Evaluation of segmentation algorithms for medical imaging. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005, pp. 7186\u20137189 (2005). doi:\n 10.1109\/IEMBS.2005.1616166","DOI":"10.1109\/IEMBS.2005.1616166"},{"key":"3_CR26","doi-asserted-by":"publisher","unstructured":"Rundo, L., Militello, C., Vitabile, S., Russo, G., Pisciotta, P., Marletta, F., Ippolito, M., D\u2019Arrigo, C., Midiri, M., Gilardi, M.C.: Semi-automatic brain lesion segmentation in gamma knife treatments using an unsupervised fuzzy c-means clustering technique. In: Bassis, S., Esposito, A., Morabito, F.C., Pasero, E. (eds.) Advances in Neural Networks: Computational Intelligence for ICT, Smart Innovation, Systems and Technologies, vol. 54, pp. 15\u201326, Springer International Publishing (2016). doi:\n 10.1007\/978-3-319-33747-0_2","DOI":"10.1007\/978-3-319-33747-0_2"}],"container-title":["Smart Innovation, Systems and Technologies","Multidisciplinary Approaches to Neural Computing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-56904-8_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,5,16]],"date-time":"2019-05-16T07:14:46Z","timestamp":1557990886000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-56904-8_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,8,30]]},"ISBN":["9783319569031","9783319569048"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-56904-8_3","relation":{},"ISSN":["2190-3018","2190-3026"],"issn-type":[{"type":"print","value":"2190-3018"},{"type":"electronic","value":"2190-3026"}],"subject":[],"published":{"date-parts":[[2017,8,30]]},"assertion":[{"value":"30 August 2017","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}}]}}