{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T17:03:27Z","timestamp":1743008607357,"version":"3.40.3"},"publisher-location":"Cham","reference-count":22,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319522760"},{"type":"electronic","value":"9783319522777"}],"license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017]]},"DOI":"10.1007\/978-3-319-52277-7_14","type":"book-chapter","created":{"date-parts":[[2017,2,15]],"date-time":"2017-02-15T09:42:27Z","timestamp":1487151747000},"page":"109-116","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Community Feature Selection for Anomaly Detection in Attributed Graphs"],"prefix":"10.1007","author":[{"given":"Mario Alfonso","family":"Prado-Romero","sequence":"first","affiliation":[]},{"given":"Andr\u00e9s","family":"Gago-Alonso","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,2,16]]},"reference":[{"key":"14_CR1","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1145\/1541880.1541882","volume":"41","author":"V Chandola","year":"2009","unstructured":"Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41, 15 (2009)","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"14_CR2","doi-asserted-by":"publisher","first-page":"626","DOI":"10.1007\/s10618-014-0365-y","volume":"29","author":"L Akoglu","year":"2015","unstructured":"Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Disc. 29, 626\u2013688 (2015)","journal-title":"Data Min. Knowl. Disc."},{"key":"14_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1007\/3-540-49257-7_15","volume-title":"Database Theory \u2014 ICDT\u201999","author":"K Beyer","year":"1999","unstructured":"Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is \u201cnearest neighbor\u201d meaningful? In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217\u2013235. Springer, Heidelberg (1999). doi:10.1007\/3-540-49257-7_15"},{"key":"14_CR4","doi-asserted-by":"crossref","unstructured":"M\u00fcller, E., S\u00e1nchez, P.I., M\u00fclle, Y., B\u00f6hm, K.: Ranking outlier nodes in subspaces of attributed graphs. In: 2013 IEEE 29th International Conference on Data Engineering Data Engineering Workshops (ICDEW), pp. 216\u2013222 (2013)","DOI":"10.1109\/ICDEW.2013.6547453"},{"key":"14_CR5","volume-title":"Outliers and Data Mining: Finding Exceptions in Data","author":"EM Knorr","year":"2002","unstructured":"Knorr, E.M.: Outliers and Data Mining: Finding Exceptions in Data. The University of British Columbia, Vancouver (2002)"},{"issue":"2","key":"14_CR6","doi-asserted-by":"publisher","first-page":"93","DOI":"10.1145\/335191.335388","volume":"29","author":"MM Breunig","year":"2000","unstructured":"Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. ACM Sig. Rec. 29(2), 93\u2013104 (2000)","journal-title":"ACM Sig. Rec."},{"key":"14_CR7","unstructured":"Papadimitriou, S., Kitagawa, H., Gibbons, P.B., Faloutsos, C.: LOCI: fast outlier detection using the local correlation integral. In: ICDE, pp. 315\u2013326 (2003)"},{"key":"14_CR8","doi-asserted-by":"crossref","unstructured":"Xiong, Y., Zhu, Y., Yu, P.S., Pei, J.: Towards cohesive anomaly mining. In: AAAI (2013)","DOI":"10.1609\/aaai.v27i1.8553"},{"issue":"1","key":"14_CR9","first-page":"3","volume":"6","author":"FT Liu","year":"2012","unstructured":"Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 3 (2012)","journal-title":"ACM Trans. Knowl. Discov. Data (TKDD)"},{"key":"14_CR10","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"274","DOI":"10.1007\/978-3-642-15883-4_18","volume-title":"Machine Learning and Knowledge Discovery in Databases","author":"FT Liu","year":"2010","unstructured":"Liu, F.T., Ting, K.M., Zhou, Z.-H.: On detecting clustered anomalies using SCiForest. In: Balc\u00e1zar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6322, pp. 274\u2013290. Springer, Heidelberg (2010). doi:10.1007\/978-3-642-15883-4_18"},{"issue":"2","key":"14_CR11","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1145\/376284.375668","volume":"30","author":"CC Aggarwal","year":"2001","unstructured":"Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. ACM Sigmod Rec. 30(2), 37\u201346 (2001)","journal-title":"ACM Sigmod Rec."},{"key":"14_CR12","doi-asserted-by":"crossref","unstructured":"Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 157\u2013166 (2005)","DOI":"10.1145\/1081870.1081891"},{"key":"14_CR13","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"410","DOI":"10.1007\/978-3-642-13672-6_40","volume-title":"Advances in Knowledge Discovery and Data Mining","author":"L Akoglu","year":"2010","unstructured":"Akoglu, L., McGlohon, M., Faloutsos, C.: OddBall: spotting anomalies in weighted graphs. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI), vol. 6119, pp. 410\u2013421. Springer, Heidelberg (2010). doi:10.1007\/978-3-642-13672-6_40"},{"key":"14_CR14","doi-asserted-by":"crossref","unstructured":"Eberle, W., Holder, L.: Discovering structural anomalies in graph-based data. In: Data Mining Workshops 2007. ICDM Workshops 2007, pp. 393\u2013398 (2007)","DOI":"10.1109\/ICDMW.2007.91"},{"key":"14_CR15","doi-asserted-by":"crossref","unstructured":"Noble, C.C., Cook, D.J.: Graph-based anomaly detection. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 631\u2013636 (2003)","DOI":"10.1145\/956750.956831"},{"key":"14_CR16","doi-asserted-by":"crossref","unstructured":"Gao, J., Liang, F., Fan, W., Wang, C., Sun, Y., Han, J.: On community outliers and their efficient detection in information networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 813\u2013822 (2010)","DOI":"10.1145\/1835804.1835907"},{"key":"14_CR17","doi-asserted-by":"crossref","unstructured":"Moser, F., Colak, R., Rafiey, A., Ester, M.: Mining cohesive patterns from graphs with feature vectors. In: SDM, vol. 9, pp. 593\u2013604 (2009)","DOI":"10.1137\/1.9781611972795.51"},{"key":"14_CR18","doi-asserted-by":"crossref","unstructured":"G\u00fcnnemann, S., Farber, I., Boden, B., Seidl, T.: Subspace clustering meets dense subgraph mining: a synthesis of two paradigms. In: Data Mining (ICDM) 10th International Conference on Data Mining, pp. 845\u2013850 (2010)","DOI":"10.1109\/ICDM.2010.95"},{"key":"14_CR19","doi-asserted-by":"crossref","unstructured":"Akoglu, L., Tong, H., Meeder, B., Faloutsos, C.: PICS: parameter-free identification of cohesive subgroups in large attributed graphs. In: SDM, pp. 439\u2013450 (2012)","DOI":"10.1137\/1.9781611972825.38"},{"issue":"10","key":"14_CR20","doi-asserted-by":"publisher","first-page":"P10008","DOI":"10.1088\/1742-5468\/2008\/10\/P10008","volume":"2008","author":"VD Blondel","year":"2008","unstructured":"Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)","journal-title":"J. Stat. Mech. Theory Exp."},{"key":"14_CR21","unstructured":"He, X., Cai, D., Niyogi, P.: Laplacian Score for feature selection. In: Advances in Neural Information Processing Systems, pp. 507\u2013514 (2005)"},{"key":"14_CR22","doi-asserted-by":"crossref","unstructured":"Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.: Scan: a structural clustering algorithm for networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 824\u2013833 (2007)","DOI":"10.1145\/1281192.1281280"}],"container-title":["Lecture Notes in Computer Science","Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-52277-7_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T14:15:39Z","timestamp":1709820939000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-52277-7_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"ISBN":["9783319522760","9783319522777"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-52277-7_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2017]]},"assertion":[{"value":"16 February 2017","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CIARP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Iberoamerican Congress on Pattern Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lima","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Peru","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2016","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 November 2016","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 November 2016","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ciarp2016","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.ciarp.org\/xxi","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}