{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T02:25:32Z","timestamp":1742955932406,"version":"3.40.3"},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319471563"},{"type":"electronic","value":"9783319471570"}],"license":[{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2016]]},"DOI":"10.1007\/978-3-319-47157-0_33","type":"book-chapter","created":{"date-parts":[[2016,9,30]],"date-time":"2016-09-30T09:09:24Z","timestamp":1475226564000},"page":"271-278","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Tumor Lesion Segmentation from 3D PET Using a Machine Learning Driven Active Surface"],"prefix":"10.1007","author":[{"given":"Payam","family":"Ahmadvand","sequence":"first","affiliation":[]},{"given":"N\u00f3ir\u00edn","family":"Duggan","sequence":"additional","affiliation":[]},{"given":"Fran\u00e7ois","family":"B\u00e9nard","sequence":"additional","affiliation":[]},{"given":"Ghassan","family":"Hamarneh","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,10,1]]},"reference":[{"issue":"8","key":"33_CR1","doi-asserted-by":"publisher","first-page":"082507: 1","DOI":"10.1118\/1.4816296","volume":"40","author":"M Abdoli","year":"2013","unstructured":"Abdoli, M., et al.: Contourlet-based active contour model for PET image segmentation. Med. Phys. 40(8), 082507: 1\u2013082507: 12 (2013)","journal-title":"Med. Phys."},{"issue":"8","key":"33_CR2","doi-asserted-by":"publisher","first-page":"929","DOI":"10.1016\/j.media.2013.05.004","volume":"17","author":"U Bagci","year":"2013","unstructured":"Bagci, U., et al.: Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images. Med. Image Anal. 17(8), 929\u2013945 (2013)","journal-title":"Med. Image Anal."},{"key":"33_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"569","DOI":"10.1007\/978-3-319-10404-1_71","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2014","author":"L Bi","year":"2014","unstructured":"Bi, L., Kim, J., Feng, D., Fulham, M.: Multi-stage thresholded region classification for whole-body PET-CT lymphoma studies. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 569\u2013576. Springer, Heidelberg (2014). doi:10.1007\/978-3-319-10404-1_71"},{"issue":"2","key":"33_CR4","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1007\/s10851-007-0002-0","volume":"28","author":"X Bresson","year":"2007","unstructured":"Bresson, X., et al.: Fast global minimization of the active contour\/snake model. J. Math. Imaging Vis. 28(2), 151\u2013167 (2007)","journal-title":"J. Math. Imaging Vis."},{"issue":"6","key":"33_CR5","doi-asserted-by":"publisher","first-page":"1045","DOI":"10.1007\/s10278-013-9622-7","volume":"26","author":"K Clark","year":"2013","unstructured":"Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045\u20131057 (2013)","journal-title":"J. Digit. Imaging"},{"issue":"1","key":"33_CR6","doi-asserted-by":"publisher","first-page":"45","DOI":"10.5589\/m02-004","volume":"28","author":"DA Clausi","year":"2002","unstructured":"Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 28(1), 45\u201362 (2002)","journal-title":"Can. J. Remote Sens."},{"issue":"1","key":"33_CR7","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1007\/s11548-015-1231-0","volume":"11","author":"H Cui","year":"2015","unstructured":"Cui, H., et al.: Primary lung tumor segmentation from PET-CT volumes with spatial-topological constraint. Int. J. Comput. Assist. Radiol. Surg. 11(1), 19\u201329 (2015)","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"issue":"2","key":"33_CR8","doi-asserted-by":"publisher","first-page":"409","DOI":"10.1109\/TMI.2010.2083681","volume":"30","author":"A Dewalle-Vignion","year":"2011","unstructured":"Dewalle-Vignion, A., et al.: A new method for volume segmentation of PET images, based on possibility theory. IEEE Trans. Med. Imag. 30(2), 409\u2013423 (2011)","journal-title":"IEEE Trans. Med. Imag."},{"key":"33_CR9","doi-asserted-by":"publisher","first-page":"e2057","DOI":"10.7717\/peerj.2057","volume":"4","author":"A Fedorov","year":"2016","unstructured":"Fedorov, A., et al.: DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET\/CT analysis results in head and neck cancer research. PeerJ 4, e2057 (2016)","journal-title":"PeerJ"},{"issue":"3","key":"33_CR10","doi-asserted-by":"publisher","first-page":"711","DOI":"10.1109\/TBME.2013.2288258","volume":"61","author":"B Foster","year":"2014","unstructured":"Foster, B., et al.: Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models. IEEE Trans. Biomed. Eng. 61(3), 711\u2013724 (2014)","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"33_CR11","doi-asserted-by":"publisher","first-page":"76","DOI":"10.1016\/j.compbiomed.2014.04.014","volume":"50","author":"B Foster","year":"2014","unstructured":"Foster, B., et al.: A review on segmentation of positron emission tomography images. Comput. Biol. Med. 50, 76\u201396 (2014)","journal-title":"Comput. Biol. Med."},{"key":"33_CR12","doi-asserted-by":"publisher","first-page":"610","DOI":"10.1109\/TSMC.1973.4309314","volume":"6","author":"RM Haralick","year":"1973","unstructured":"Haralick, R.M., et al.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610\u2013621 (1973)","journal-title":"IEEE Trans. Syst. Man Cybern."},{"issue":"1","key":"33_CR13","doi-asserted-by":"publisher","first-page":"301","DOI":"10.1016\/j.ijrobp.2009.08.018","volume":"77","author":"M Hatt","year":"2010","unstructured":"Hatt, M., et al.: Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int. J. Radiat. Oncol. Biol. Phys. 77(1), 301\u2013308 (2010)","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"issue":"12","key":"33_CR14","doi-asserted-by":"publisher","first-page":"5854","DOI":"10.1109\/TIP.2015.2488902","volume":"24","author":"W Ju","year":"2015","unstructured":"Ju, W., et al.: Random walk and graph cut for co-segmentation of lung tumor on PET-CT images. IEEE Trans. Image Process. 24(12), 5854\u20135867 (2015)","journal-title":"IEEE Trans. Image Process."},{"issue":"2","key":"33_CR15","doi-asserted-by":"publisher","first-page":"330","DOI":"10.1016\/j.media.2013.11.003","volume":"18","author":"A Kumar","year":"2014","unstructured":"Kumar, A., et al.: A graph-based approach for the retrieval of multi-modality medical images. Med. Image Anal. 18(2), 330\u2013342 (2014)","journal-title":"Med. Image Anal."},{"issue":"10","key":"33_CR16","doi-asserted-by":"publisher","first-page":"5720","DOI":"10.1118\/1.4929561","volume":"42","author":"J Lapuyade-Lahorgue","year":"2015","unstructured":"Lapuyade-Lahorgue, J., et al.: Speqtacle: an automated generalized fuzzy c-means algorithm for tumor delineation in PET. Med. Phys. 42(10), 5720\u20135734 (2015)","journal-title":"Med. Phys."},{"issue":"1","key":"33_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s40658-015-0110-7","volume":"2","author":"T Layer","year":"2015","unstructured":"Layer, T., et al.: PET image segmentation using a Gaussian mixture model and Markov random fields. EJNMMI Phys. 2(1), 1\u201315 (2015)","journal-title":"EJNMMI Phys."},{"key":"33_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"545","DOI":"10.1007\/978-3-642-33415-3_67","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2012","author":"B Lelandais","year":"2012","unstructured":"Lelandais, B., Gardin, I., Mouchard, L., Vera, P., Ruan, S.: Segmentation of biological target volumes on multi-tracer PET images based on information fusion for achieving dose painting in radiotherapy. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 545\u2013552. Springer, Heidelberg (2012). doi:10.1007\/978-3-642-33415-3_67"},{"issue":"3","key":"33_CR19","first-page":"18","volume":"2","author":"A Liaw","year":"2002","unstructured":"Liaw, A., et al.: Classification and regression by randomForest. R News 2(3), 18\u201322 (2002)","journal-title":"R News"},{"issue":"8","key":"33_CR20","first-page":"1342","volume":"46","author":"U Nestle","year":"2005","unstructured":"Nestle, U., et al.: Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J. Nucl. Med. 46(8), 1342\u20131348 (2005)","journal-title":"J. Nucl. Med."},{"issue":"2","key":"33_CR21","doi-asserted-by":"publisher","first-page":"780","DOI":"10.1109\/36.752194","volume":"37","author":"LK Soh","year":"1999","unstructured":"Soh, L.K., et al.: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37(2), 780\u2013795 (1999)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"9","key":"33_CR22","doi-asserted-by":"publisher","first-page":"1685","DOI":"10.1109\/TMI.2013.2263388","volume":"32","author":"Q Song","year":"2013","unstructured":"Song, Q., et al.: Optimal co-segmentation of tumor in PET-CT images with context information. IEEE Trans. Med. Imag. 32(9), 1685\u20131697 (2013)","journal-title":"IEEE Trans. Med. Imag."},{"issue":"2","key":"33_CR23","doi-asserted-by":"publisher","first-page":"618","DOI":"10.1016\/j.ijrobp.2009.04.043","volume":"75","author":"H Yu","year":"2009","unstructured":"Yu, H., et al.: Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images. Int. J. Radiat. Oncol. Biol. Phys. 75(2), 618\u2013625 (2009)","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"issue":"10","key":"33_CR24","doi-asserted-by":"publisher","first-page":"1530","DOI":"10.1016\/j.compbiomed.2013.07.027","volume":"43","author":"Z Zeng","year":"2013","unstructured":"Zeng, Z., et al.: Unsupervised tumour segmentation in PET using local and global intensity-fitting active surface and alpha matting. Comput. Biol. Med. 43(10), 1530\u20131544 (2013)","journal-title":"Comput. Biol. Med."}],"container-title":["Lecture Notes in Computer Science","Machine Learning in Medical Imaging"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-47157-0_33","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T12:12:41Z","timestamp":1710245561000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-47157-0_33"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016]]},"ISBN":["9783319471563","9783319471570"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-47157-0_33","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2016]]},"assertion":[{"value":"1 October 2016","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MLMI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Machine Learning in Medical Imaging","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Athens","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2016","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 October 2016","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 October 2016","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mlmi-med2016","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}