{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T15:43:59Z","timestamp":1726760639770},"publisher-location":"Cham","reference-count":37,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319464862"},{"type":"electronic","value":"9783319464879"}],"license":[{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2016]]},"DOI":"10.1007\/978-3-319-46487-9_32","type":"book-chapter","created":{"date-parts":[[2016,9,16]],"date-time":"2016-09-16T10:50:47Z","timestamp":1474023047000},"page":"519-534","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":236,"title":["Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"],"prefix":"10.1007","author":[{"given":"Golnaz","family":"Ghiasi","sequence":"first","affiliation":[]},{"given":"Charless C.","family":"Fowlkes","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,9,17]]},"reference":[{"issue":"4","key":"32_CR1","doi-asserted-by":"publisher","first-page":"532","DOI":"10.1109\/TCOM.1983.1095851","volume":"31","author":"PJ Burt","year":"1983","unstructured":"Burt, P.J., Adelson, E.H.: The laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532\u2013540 (1983)","journal-title":"IEEE Trans. Commun."},{"issue":"3","key":"32_CR2","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1007\/s11263-011-0507-2","volume":"98","author":"J Carreira","year":"2012","unstructured":"Carreira, J., Li, F., Sminchisescu, C.: Object recognition by sequential figure-ground ranking. IJCV 98(3), 243\u2013262 (2012)","journal-title":"IJCV"},{"issue":"7","key":"32_CR3","doi-asserted-by":"publisher","first-page":"1312","DOI":"10.1109\/TPAMI.2011.231","volume":"34","author":"J Carreira","year":"2012","unstructured":"Carreira, J., Sminchisescu, C.: CPMC: automatic object segmentation using constrained parametric min-cuts. PAMI 34(7), 1312\u20131328 (2012)","journal-title":"PAMI"},{"key":"32_CR4","doi-asserted-by":"crossref","unstructured":"Chen, L.C., Barron, J.T., Papandreou, G., Murphy, K., Yuille, A.L.: Semantic image segmentation with task-specific edge detection using CNNs and a discriminatively trained domain transform. In: CVPR (2016)","DOI":"10.1109\/CVPR.2016.492"},{"key":"32_CR5","unstructured":"Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015)"},{"key":"32_CR6","unstructured":"Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connectedCRFs (2016). arXiv preprint \n arXiv:1606.00915"},{"key":"32_CR7","doi-asserted-by":"crossref","unstructured":"Chen, L.C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: scale-aware semantic image segmentation. In: CVPR (2015)","DOI":"10.1109\/CVPR.2016.396"},{"key":"32_CR8","doi-asserted-by":"crossref","unstructured":"Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)","DOI":"10.1109\/CVPR.2016.350"},{"key":"32_CR9","unstructured":"Dai, J., He, K., Sun, J.: Convolutional feature masking for joint object and stuff segmentation (2014). arXiv preprint \n arXiv:1412.1283"},{"key":"32_CR10","doi-asserted-by":"crossref","unstructured":"Dai, J., He, K., Sun, J.: Boxsup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: ICCV, pp. 1635\u20131643 (2015)","DOI":"10.1109\/ICCV.2015.191"},{"key":"32_CR11","unstructured":"Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a laplacian pyramid of adversarial networks. In: NIPS, pp. 1486\u20131494 (2015)"},{"key":"32_CR12","doi-asserted-by":"publisher","first-page":"98","DOI":"10.1007\/s11263-014-0733-5","volume":"111","author":"M Everingham","year":"2015","unstructured":"Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. IJCV 111, 98\u2013136 (2015)","journal-title":"IJCV"},{"key":"32_CR13","doi-asserted-by":"crossref","unstructured":"Gidaris, S., Komodakis, N.: Object detection via a multi-region and semantic segmentation-aware CNN model. In: ICCV, pp. 1134\u20131142 (2015)","DOI":"10.1109\/ICCV.2015.135"},{"key":"32_CR14","doi-asserted-by":"crossref","unstructured":"Hariharan, B., Arbel\u00e1ez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: ICCV, pp. 991\u2013998 (2011)","DOI":"10.1109\/ICCV.2011.6126343"},{"key":"32_CR15","doi-asserted-by":"crossref","unstructured":"Hariharan, B., Arbel\u00e1ez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: CVPR, pp. 447\u2013456 (2015)","DOI":"10.1109\/CVPR.2015.7298642"},{"key":"32_CR16","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). arXiv preprint \n arXiv:1512.03385"},{"key":"32_CR17","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: ECCV (2016)","DOI":"10.1007\/978-3-319-46493-0_38"},{"issue":"3","key":"32_CR18","doi-asserted-by":"publisher","first-page":"302","DOI":"10.1007\/s11263-008-0202-0","volume":"82","author":"P Kohli","year":"2009","unstructured":"Kohli, P., Ladick, L., Torr, P.H.: Robust higher order potentials for enforcing label consistency. IJCV 82(3), 302\u2013324 (2009)","journal-title":"IJCV"},{"key":"32_CR19","unstructured":"Kokkinos, I.: Pushing the boundaries of boundary detection using deep learning. In: ICLR (2016)"},{"key":"32_CR20","unstructured":"Kr\u00e4henb\u00fchl, P., Koltun, V.: Efficient inference in fully connected CRFs with gaussian edge potentials. In: NIPS (2011)"},{"key":"32_CR21","doi-asserted-by":"crossref","unstructured":"Lin, G., Shen, C., van den Hengel, A., Reid, I.: Efficient piecewise training of deep structured models for semantic segmentation. In: CVPR (2016)","DOI":"10.1109\/CVPR.2016.348"},{"key":"32_CR22","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-319-10602-1_48","volume-title":"Computer Vision \u2013 ECCV 2014","author":"T-Y Lin","year":"2014","unstructured":"Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Doll\u00e1r, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740\u2013755. Springer, Heidelberg (2014). doi:\n 10.1007\/978-3-319-10602-1_48"},{"key":"32_CR23","doi-asserted-by":"crossref","unstructured":"Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Semantic image segmentation via deep parsing network. In: ICCV, pp. 1377\u20131385 (2015)","DOI":"10.1109\/ICCV.2015.162"},{"key":"32_CR24","doi-asserted-by":"crossref","unstructured":"Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431\u20133440 (2015)","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"32_CR25","doi-asserted-by":"crossref","unstructured":"Mostajabi, M., Yadollahpour, P., Shakhnarovich, G.: Feedforward semantic segmentation with zoom-out features. In: CVPR, pp. 3376\u20133385 (2015)","DOI":"10.1109\/CVPR.2015.7298959"},{"key":"32_CR26","doi-asserted-by":"crossref","unstructured":"Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: ICCV, pp. 1520\u20131528 (2015)","DOI":"10.1109\/ICCV.2015.178"},{"key":"32_CR27","doi-asserted-by":"crossref","unstructured":"Pinheiro, P.O., Lin, T.Y., Collobert, R., Doll\u00e1r, P.: Learning to refine object segments. In: ECCV (2016)","DOI":"10.1007\/978-3-319-46448-0_5"},{"issue":"1","key":"32_CR28","doi-asserted-by":"publisher","first-page":"2","DOI":"10.1007\/s11263-007-0109-1","volume":"81","author":"J Shotton","year":"2009","unstructured":"Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV 81(1), 2\u201323 (2009)","journal-title":"IJCV"},{"key":"32_CR29","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint \n arXiv:1409.1556"},{"key":"32_CR30","first-page":"14","volume-title":"Lecture Notes in Computer Science","author":"Jonas Uhrig","year":"2016","unstructured":"Uhrig, J., Cordts, M., Franke, U., Brox, T.: Pixel-level encoding and depth layering for instance-level semantic labeling (2016). arXiv preprint \n arXiv:1604.05096"},{"key":"32_CR31","doi-asserted-by":"crossref","unstructured":"Vedaldi, A., Lenc, K.: Matconvnet - convolutional neural networks for matlab. In: ICML (2015)","DOI":"10.1145\/2733373.2807412"},{"key":"32_CR32","doi-asserted-by":"crossref","unstructured":"Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV, pp. 1395\u20131403 (2015)","DOI":"10.1109\/ICCV.2015.164"},{"key":"32_CR33","doi-asserted-by":"crossref","unstructured":"Yang, S., Ramanan, D.: Multi-scale recognition with dag-CNNs. In: ICCV, pp. 1215\u20131223 (2015)","DOI":"10.1109\/ICCV.2015.144"},{"key":"32_CR34","unstructured":"Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions (2015). arXiv preprint \n arXiv:1511.07122"},{"key":"32_CR35","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"818","DOI":"10.1007\/978-3-319-10590-1_53","volume-title":"Computer Vision \u2013 ECCV 2014","author":"MD Zeiler","year":"2014","unstructured":"Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818\u2013833. Springer, Heidelberg (2014). doi:\n 10.1007\/978-3-319-10590-1_53"},{"key":"32_CR36","doi-asserted-by":"crossref","unstructured":"Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: ICCV, pp. 2018\u20132025 (2011)","DOI":"10.1109\/ICCV.2011.6126474"},{"key":"32_CR37","doi-asserted-by":"crossref","unstructured":"Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P.H.: Conditional random fields as recurrent neural networks. In: ICCV, pp. 1529\u20131537 (2015)","DOI":"10.1109\/ICCV.2015.179"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2016"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-46487-9_32","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,10,9]],"date-time":"2020-10-09T20:37:55Z","timestamp":1602275875000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-46487-9_32"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016]]},"ISBN":["9783319464862","9783319464879"],"references-count":37,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-46487-9_32","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2016]]},"assertion":[{"value":"17 September 2016","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Amsterdam","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"The Netherlands","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2016","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2016","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 October 2016","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2016","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.eccv2016.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}