{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T07:03:52Z","timestamp":1725865432145},"publisher-location":"Cham","reference-count":55,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319464657"},{"type":"electronic","value":"9783319464664"}],"license":[{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2016]]},"DOI":"10.1007\/978-3-319-46466-4_12","type":"book-chapter","created":{"date-parts":[[2016,9,16]],"date-time":"2016-09-16T09:31:58Z","timestamp":1474018318000},"page":"188-205","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Adaptive Signal Recovery on Graphs via\u00a0Harmonic Analysis for Experimental Design\u00a0in\u00a0Neuroimaging"],"prefix":"10.1007","author":[{"given":"Won Hwa","family":"Kim","sequence":"first","affiliation":[]},{"given":"Seong Jae","family":"Hwang","sequence":"additional","affiliation":[]},{"given":"Nagesh","family":"Adluru","sequence":"additional","affiliation":[]},{"given":"Sterling C.","family":"Johnson","sequence":"additional","affiliation":[]},{"given":"Vikas","family":"Singh","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,9,17]]},"reference":[{"issue":"1","key":"12_CR1","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1016\/S0004-3702(97)00063-5","volume":"97","author":"AL Blum","year":"1997","unstructured":"Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1), 245\u2013271 (1997)","journal-title":"Artif. Intell."},{"key":"12_CR2","doi-asserted-by":"crossref","unstructured":"Biswas, A., Parikh, D.: Simultaneous active learning of classifiers & attributes via relative feedback. In: CVPR, pp. 644\u2013651 (2013)","DOI":"10.1109\/CVPR.2013.89"},{"key":"12_CR3","unstructured":"Jayaraman, D., Grauman, K.: Zero-shot recognition with unreliable attributes. In: NIPS, pp. 3464\u20133472 (2014)"},{"issue":"2","key":"12_CR4","doi-asserted-by":"publisher","first-page":"884","DOI":"10.1016\/j.patcog.2011.08.009","volume":"45","author":"E Lughofer","year":"2012","unstructured":"Lughofer, E.: Hybrid active learning for reducing the annotation effort of operators in classification systems. Pattern Recognit. 45(2), 884\u2013896 (2012)","journal-title":"Pattern Recognit."},{"key":"12_CR5","doi-asserted-by":"crossref","unstructured":"Hancock, C., Bernal, B., Medina, C., et al.: Cost analysis of diffusion tensor imaging and MR tractography of the brain. Open J. Radiol. 2014 (2014)","DOI":"10.4236\/ojrad.2014.43034"},{"issue":"2","key":"12_CR6","first-page":"53","volume":"83","author":"MW Saif","year":"2010","unstructured":"Saif, M.W., Tzannou, I., Makrilia, N., et al.: Role and cost effectiveness of PET\/CT in management of patients with cancer. Yale J. Biol. Med. 83(2), 53\u201365 (2010)","journal-title":"Yale J. Biol. Med."},{"key":"12_CR7","unstructured":"Prasad, A., Jegelka, S., Batra, D.: Submodular meets structured: finding diverse subsets in exponentially-large structured item sets. In: NIPS, pp. 2645\u20132653 (2014)"},{"key":"12_CR8","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., et al.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248\u2013255 (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"issue":"1\u20132","key":"12_CR9","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1007\/s11263-014-0721-9","volume":"108","author":"S Vijayanarasimhan","year":"2014","unstructured":"Vijayanarasimhan, S., Grauman, K.: Large-scale live active learning: training object detectors with crawled data and crowds. IJCV 108(1\u20132), 97\u2013114 (2014)","journal-title":"IJCV"},{"key":"12_CR10","doi-asserted-by":"crossref","unstructured":"Deng, J., Russakovsky, O., Krause, J., et al.: Scalable multi-label annotation. In: SIGCHI, pp. 3099\u20133102. ACM (2014)","DOI":"10.1145\/2556288.2557011"},{"key":"12_CR11","doi-asserted-by":"crossref","unstructured":"Bragg, J., Weld, D.S., et al.: Crowdsourcing multi-label classification for taxonomy creation. In: AAAI (2013)","DOI":"10.1609\/hcomp.v1i1.13091"},{"issue":"1\u20132","key":"12_CR12","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1007\/s10994-012-5279-6","volume":"88","author":"J Read","year":"2012","unstructured":"Read, J., Bifet, A., Holmes, G., et al.: Scalable and efficient multi-label classification for evolving data streams. Mach. Learn. 88(1\u20132), 243\u2013272 (2012)","journal-title":"Mach. Learn."},{"key":"12_CR13","unstructured":"Settles, B.: Active learning literature survey. University of Wisconsin, Madison vol. 52(55\u201366), p. 11 (2010)"},{"key":"12_CR14","unstructured":"Dasgupta, S.: Analysis of a greedy active learning strategy. In: NIPS, pp. 337\u2013344 (2004)"},{"key":"12_CR15","doi-asserted-by":"crossref","unstructured":"Beygelzimer, A., Dasgupta, S., Langford, J.: Importance weighted active learning. In: ICML, pp. 49\u201356. ACM (2009)","DOI":"10.1145\/1553374.1553381"},{"key":"12_CR16","doi-asserted-by":"crossref","unstructured":"Dasgupta, S., Hsu, D.: Hierarchical sampling for active learning. In: ICML, pp. 208\u2013215. ACM (2008)","DOI":"10.1145\/1390156.1390183"},{"volume-title":"Statistical Principles in Experimental Design","year":"1971","author":"BJ Winer","key":"12_CR17","unstructured":"Winer, B.J., Brown, D.R., Michels, K.M.: Statistical Principles in Experimental Design. McGraw-Hill, New York (1971)"},{"key":"12_CR18","doi-asserted-by":"publisher","first-page":"1344","DOI":"10.1214\/aoms\/1177697506","volume":"40","author":"M Lentner","year":"1969","unstructured":"Lentner, M.: Generalized least-squares estimation of a subvector of parameters in randomized fractional factorial experiments. Ann. Math. Stat. 40, 1344\u20131352 (1969)","journal-title":"Ann. Math. Stat."},{"volume-title":"Fundamentals of Experimental Design","year":"1972","author":"JL Myers","key":"12_CR19","unstructured":"Myers, J.L.: Fundamentals of Experimental Design. Allyn & Bacon, Boston (1972)"},{"issue":"2","key":"12_CR20","first-page":"203","volume":"16","author":"TJ Mitchell","year":"1974","unstructured":"Mitchell, T.J.: An algorithm for the construction of D-optimal experimental designs. Technometrics 16(2), 203\u2013210 (1974)","journal-title":"Technometrics"},{"issue":"2","key":"12_CR21","doi-asserted-by":"publisher","first-page":"199","DOI":"10.1016\/0169-7439(94)00076-X","volume":"30","author":"PF De Aguiar","year":"1995","unstructured":"De Aguiar, P.F., Bourguignon, B., Khots, M., et al.: D-optimal designs. Chemometr. Intell. Lab. Syst. 30(2), 199\u2013210 (1995)","journal-title":"Chemometr. Intell. Lab. Syst."},{"issue":"1","key":"12_CR22","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1016\/0378-3758(94)90115-5","volume":"39","author":"JS Park","year":"1994","unstructured":"Park, J.S.: Optimal Latin-hypercube designs for computer experiments. J. Stat. Plann. Infer. 39(1), 95\u2013111 (1994)","journal-title":"J. Stat. Plann. Infer."},{"key":"12_CR23","doi-asserted-by":"publisher","first-page":"4: 2","DOI":"10.1155\/2009\/421425","volume":"2009","author":"X Su","year":"2009","unstructured":"Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4: 2 (2009)","journal-title":"Adv. Artif. Intell."},{"issue":"8","key":"12_CR24","doi-asserted-by":"publisher","first-page":"2080","DOI":"10.1109\/TIP.2007.901238","volume":"16","author":"K Dabov","year":"2007","unstructured":"Dabov, K., Foi, A., Katkovnik, V., et al.: Image denoising by sparse 3-D transform-domain collaborative filtering. Image Process. 16(8), 2080\u20132095 (2007)","journal-title":"Image Process."},{"key":"12_CR25","doi-asserted-by":"crossref","unstructured":"Yu, K., Zhu, S., Lafferty, J., et al.: Fast nonparametric matrix factorization for large-scale collaborative filtering. In: SIGIR, pp. 211\u2013218. ACM (2009)","DOI":"10.1145\/1571941.1571979"},{"key":"12_CR26","unstructured":"Srebro, N., Salakhutdinov, R.R.: Collaborative filtering in a non-uniform world: learning with the weighted trace norm. In: NIPS, pp. 2056\u20132064 (2010)"},{"issue":"1","key":"12_CR27","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1007\/s10107-010-0417-z","volume":"127","author":"A Juditsky","year":"2011","unstructured":"Juditsky, A., Nemirovski, A.: On verifiable sufficient conditions for sparse signal recovery via $$\\ell $$1 minimization. Math. Program. 127(1), 57\u201388 (2011)","journal-title":"Math. Program."},{"issue":"2","key":"12_CR28","doi-asserted-by":"publisher","first-page":"612","DOI":"10.1109\/TIP.2013.2288004","volume":"23","author":"F Krahmer","year":"2014","unstructured":"Krahmer, F., Ward, R.: Stable and robust sampling strategies for compressive imaging. Image Process. 23(2), 612\u2013622 (2014)","journal-title":"Image Process."},{"key":"12_CR29","unstructured":"Rao, N., Yu, H.F., Ravikumar, P.K., et al.: Collaborative filtering with graph information: consistency and scalable methods. In: NIPS (2015)"},{"key":"12_CR30","unstructured":"Puy, G., Tremblay, N., Gribonval, R., et al.: Random sampling of bandlimited signals on graphs. Appl. Comput. Harmonic Anal. (2016)"},{"issue":"1","key":"12_CR31","first-page":"981","volume":"13","author":"S Kumar","year":"2012","unstructured":"Kumar, S., Mohri, M., Talwalkar, A.: Sampling methods for the Nystr\u00f6m method. JMLR 13(1), 981\u20131006 (2012)","journal-title":"JMLR"},{"key":"12_CR32","unstructured":"Krishnamurthy, A., Singh, A.: Low-rank matrix and tensor completion via adaptive sampling. In: NIPS, pp. 836\u2013844 (2013)"},{"issue":"2","key":"12_CR33","doi-asserted-by":"publisher","first-page":"129","DOI":"10.1016\/j.acha.2010.04.005","volume":"30","author":"D Hammond","year":"2011","unstructured":"Hammond, D., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmonic Anal. 30(2), 129\u2013150 (2011)","journal-title":"Appl. Comput. Harmonic Anal."},{"volume-title":"A Wavelet Tour of Signal Processing","year":"1999","author":"S Mallat","key":"12_CR34","unstructured":"Mallat, S.: A Wavelet Tour of Signal Processing. Academic press, San Diego (1999)"},{"issue":"1","key":"12_CR35","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/j.acha.2006.04.004","volume":"21","author":"R Coifman","year":"2006","unstructured":"Coifman, R., Maggioni, M.: Diffusion wavelets. Appl. Comput. Harmonic Anal. 21(1), 53\u201394 (2006)","journal-title":"Appl. Comput. Harmonic Anal."},{"volume-title":"Signals and Systems","year":"2005","author":"S Haykin","key":"12_CR36","unstructured":"Haykin, S., Veen, B.V.: Signals and Systems. Wiley, New York (2005)"},{"key":"12_CR37","doi-asserted-by":"crossref","unstructured":"Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: CVPR, pp. 1704\u20131711. IEEE (2010)","DOI":"10.1109\/CVPR.2010.5539838"},{"key":"12_CR38","doi-asserted-by":"crossref","unstructured":"Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: ICCV Workshops, pp. 1626\u20131633. IEEE (2011)","DOI":"10.1109\/ICCVW.2011.6130444"},{"key":"12_CR39","unstructured":"Rustamov, R.M.: Laplace-Beltrami eigen functions for deformation invariant shape representation. In: Eurographics Symposium on Geometry Processing, Eurographics Association, pp. 225\u2013233 (2007)"},{"key":"12_CR40","doi-asserted-by":"crossref","unstructured":"Kim, W.H., Chung, M.K., Singh, V.: Multi-resolution shape analysis via non-euclidean wavelets: applications to mesh segmentation and surface alignment problems. In: CVPR, pp. 2139\u20132146. IEEE (2013)","DOI":"10.1109\/CVPR.2013.278"},{"key":"12_CR41","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1016\/j.neuroimage.2014.01.009","volume":"91","author":"A Varentsova","year":"2014","unstructured":"Varentsova, A., Zhang, S., Arfanakis, K.: Development of a high angular resolution diffusion imaging human brain template. Neuroimage 91, 177\u2013186 (2014)","journal-title":"Neuroimage"},{"key":"12_CR42","doi-asserted-by":"publisher","first-page":"62","DOI":"10.1016\/j.neuroimage.2013.05.041","volume":"80","author":"DC Van Essen","year":"2013","unstructured":"Van Essen, D.C., Smith, S.M., Barch, D.M., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62\u201379 (2013)","journal-title":"Neuroimage"},{"issue":"1","key":"12_CR43","doi-asserted-by":"publisher","first-page":"569","DOI":"10.1016\/j.neuroimage.2012.06.033","volume":"63","author":"K Setsompop","year":"2012","unstructured":"Setsompop, K., Cohen-Adad, J., Gagoski, B., et al.: Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 63(1), 569\u2013580 (2012)","journal-title":"Neuroimage"},{"issue":"11","key":"12_CR44","doi-asserted-by":"publisher","first-page":"1546","DOI":"10.1038\/nn.4134","volume":"18","author":"S Jbabdi","year":"2015","unstructured":"Jbabdi, S., Sotiropoulos, S.N., Haber, S.N., et al.: Measuring macroscopic brain connections in vivo. Nature Neurosci. 18(11), 1546\u20131555 (2015)","journal-title":"Nature Neurosci."},{"issue":"4","key":"12_CR45","doi-asserted-by":"publisher","first-page":"e42","DOI":"10.1371\/journal.pcbi.0010042","volume":"1","author":"O Sporns","year":"2005","unstructured":"Sporns, O., Tononi, G., K\u00f6tter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1(4), e42 (2005)","journal-title":"PLoS Comput. Biol."},{"issue":"2","key":"12_CR46","doi-asserted-by":"publisher","first-page":"1299","DOI":"10.1016\/j.neuroimage.2012.01.032","volume":"62","author":"DC Van Essen","year":"2012","unstructured":"Van Essen, D.C., Ugurbil, K.: The future of the human connectome. Neuroimage 62(2), 1299\u20131310 (2012)","journal-title":"Neuroimage"},{"issue":"1","key":"12_CR47","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1227\/NEU.0b013e318258e9ff","volume":"71","author":"AW Toga","year":"2012","unstructured":"Toga, A.W., Clark, K.A., Thompson, P.M., et al.: Mapping the human connectome. Neurosurgery 71(1), 1 (2012)","journal-title":"Neurosurgery"},{"key":"12_CR48","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/j.neuroimage.2013.03.023","volume":"80","author":"O Sporns","year":"2013","unstructured":"Sporns, O.: The human connectome: origins and challenges. Neuroimage 80, 53\u201361 (2013)","journal-title":"Neuroimage"},{"key":"12_CR49","doi-asserted-by":"publisher","first-page":"65","DOI":"10.3389\/fninf.2014.00065","volume":"8","author":"R Herrick","year":"2014","unstructured":"Herrick, R., McKay, M., Olsen, T., et al.: Data dictionary services in XNAT and the human connectome project. Front. Neuroinform. 8, 65 (2014)","journal-title":"Front. Neuroinform."},{"key":"12_CR50","doi-asserted-by":"crossref","unstructured":"Kim, W.H., Kim, H.J., Adluru, N., et al.: Latent variable graphical model selection using harmonic analysis: applications to the human connectome project (HCP). In: CVPR. IEEE (2016)","DOI":"10.1109\/CVPR.2016.268"},{"issue":"5","key":"12_CR51","doi-asserted-by":"publisher","first-page":"299","DOI":"10.1089\/brain.2014.0236","volume":"4","author":"MR Brier","year":"2014","unstructured":"Brier, M.R., Thomas, J.B., Ances, B.M.: Network dysfunction in Alzheimer\u2019s disease: refining the disconnection hypothesis. Brain connectivity 4(5), 299\u2013311 (2014)","journal-title":"Brain connectivity"},{"issue":"2","key":"12_CR52","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1023\/A:1023832305702","volume":"13","author":"X Delbeuck","year":"2003","unstructured":"Delbeuck, X., Van der Linden, M., Collette, F.: Alzheimer\u2019s disease as a disconnection syndrome? Neuropsychol. Rev. 13(2), 79\u201392 (2003)","journal-title":"Neuropsychol. Rev."},{"key":"12_CR53","series-title":"Boston Studies in the Philosophy of Science","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1007\/978-94-010-2093-0_8","volume-title":"Selected Papers on Language and the Brain","author":"N Geschwind","year":"1974","unstructured":"Geschwind, N.: Disconnexion syndromes in animals and man. In: Geschwind, N. (ed.) Selected Papers on Language and the Brain. Boston Studies in the Philosophy of Science, vol. 16, pp. 105\u2013236. Springer, Amsterdam (1974)"},{"key":"12_CR54","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1016\/j.neuroimage.2015.05.050","volume":"118","author":"WH Kim","year":"2015","unstructured":"Kim, W.H., Adluru, N., Chung, M.K., et al.: Multi-resolution statistical analysis of brain connectivity graphs in preclinical Alzheimer\u2019s disease. Neuroimage 118, 103\u2013117 (2015)","journal-title":"Neuroimage"},{"key":"12_CR55","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1016\/j.neuroimage.2014.02.028","volume":"93","author":"WH Kim","year":"2014","unstructured":"Kim, W.H., Singh, V., Chung, M.K., et al.: Multi-resolutional shape features via non-Euclidean wavelets: applications to statistical analysis of cortical thickness. Neuroimage 93, 107\u2013123 (2014)","journal-title":"Neuroimage"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2016"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-46466-4_12","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,20]],"date-time":"2023-08-20T04:27:25Z","timestamp":1692505645000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-46466-4_12"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016]]},"ISBN":["9783319464657","9783319464664"],"references-count":55,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-46466-4_12","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2016]]},"assertion":[{"value":"17 September 2016","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Amsterdam","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"The Netherlands","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2016","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2016","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 October 2016","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2016","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.eccv2016.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}