{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T06:54:35Z","timestamp":1725864875879},"publisher-location":"Cham","reference-count":21,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319456409"},{"type":"electronic","value":"9783319456416"}],"license":[{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2016]]},"DOI":"10.1007\/978-3-319-45641-6_20","type":"book-chapter","created":{"date-parts":[[2016,9,8]],"date-time":"2016-09-08T10:30:29Z","timestamp":1473330629000},"page":"305-314","source":"Crossref","is-referenced-by-count":2,"title":["On Multiple Eigenvalues of a Matrix Dependent on a Parameter"],"prefix":"10.1007","author":[{"given":"Elizabeth A.","family":"Kalinina","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,9,9]]},"reference":[{"volume-title":"Numerical Mathematics and Scientific Computations","year":"2008","author":"\u00c5 Bj\u00f6rk","key":"20_CR1","unstructured":"Bj\u00f6rk, \u00c5., Dahlquist, G.: Numerical Mathematics and Scientific Computations, vol. 1. SIAM, Philadelphia (2008)"},{"issue":"1","key":"20_CR2","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1137\/S0895479802402818","volume":"25","author":"JV Burke","year":"2003","unstructured":"Burke, J.V., Lewis, A.S., Overton, M.: Optimization and pseudospectra, with applications to robust stability. SIAM J. Matrix Anal. Appl. 25(1), 80\u2013104 (2003)","journal-title":"SIAM J. Matrix Anal. Appl."},{"key":"20_CR3","doi-asserted-by":"crossref","unstructured":"Coppersmith, D., Winograd, Sh.: Matrix multiplication via arithmetic progressions. J. Symbolic Comput. 9(3), 251\u2013280 (1990)","DOI":"10.1016\/S0747-7171(08)80013-2"},{"key":"20_CR4","doi-asserted-by":"crossref","unstructured":"Giorgi, P., Jeannerod, C.-P., Villard, G.: On the complexity of polynomial matrix computations. In: ISSAC 2003, pp. 135\u2013142. ACM Press, New York (2003)","DOI":"10.1145\/860854.860889"},{"key":"20_CR5","unstructured":"Golub, G.H., Van Loan, Ch.F: Matrix Computations. The Johns Hopkins University Press, Baltimore and London (1996)"},{"key":"20_CR6","doi-asserted-by":"crossref","first-page":"902","DOI":"10.1137\/100783157","volume":"32","author":"E Jarlebring","year":"2011","unstructured":"Jarlebring, E., Kvaal, S., Michiels, W.: Computing all pairs $$(\\lambda; \\mu )$$ such that $$\\lambda $$ is a double eigenvalue of $$A+\\mu B$$ . SIAM J. Matrix Anal. Appl. 32, 902\u2013927 (2011)","journal-title":"SIAM J. Matrix Anal. Appl."},{"key":"20_CR7","unstructured":"Horn, R.A., Johnson, Ch.R.: Matrix Analysis. Cambridge University Press, New York (2013)"},{"key":"20_CR8","doi-asserted-by":"crossref","unstructured":"Horn, R.A., Johnson, Ch.R.: Topics in Matrix Analysis. Cambridge University Press, New York (1991)","DOI":"10.1017\/CBO9780511840371"},{"key":"20_CR9","doi-asserted-by":"crossref","first-page":"143","DOI":"10.13001\/1081-3810.1225","volume":"15","author":"M Karow","year":"2006","unstructured":"Karow, M.: Eigenvalue condition numbers and a formula of Burke, Lewis and Overton. Electron. J. Linear Algebra 15, 143\u2013153 (2006)","journal-title":"Electron. J. Linear Algebra"},{"issue":"1","key":"20_CR10","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1137\/060672893","volume":"31","author":"D Kressner","year":"2009","unstructured":"Kressner, D., Pel\u00e1ez, M.J., Moro, J.: Structured H\u00f6lder condition numbers for multiple eigenvalues. SIAM J. Matrix Anal. Appl. 31(1), 175\u2013201 (2009)","journal-title":"SIAM J. Matrix Anal. Appl."},{"issue":"5","key":"20_CR11","first-page":"220","volume":"1","author":"UJJ Leverrier","year":"1840","unstructured":"Leverrier, U.J.J.: Sur les variations s\u00e9culaires des \u00e9lements des orbites pour les sept plan\u00e8tes principales. J. de Math. 1(5), 220\u2013254 (1840)","journal-title":"J. de Math."},{"volume-title":"The Theory of Group Characters and Matrix Representations of Groups","year":"1950","author":"DE Littlewood","key":"20_CR12","unstructured":"Littlewood, D.E.: The Theory of Group Characters and Matrix Representations of Groups. Oxford University Press, Oxford (1950)"},{"volume-title":"The Theory of Matrices","year":"1956","author":"CC MacDuffee","key":"20_CR13","unstructured":"MacDuffee, C.C.: The Theory of Matrices. Chelsea Publishing Company, New York (1956)"},{"key":"20_CR14","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1002\/nla.471","volume":"13","author":"AA Mailybaev","year":"2006","unstructured":"Mailybaev, A.A.: Computation of multiple eigenvalues and generalized eigenvectors for matrices dependent on parameters. Numer. Linear Algebra Appl. 13, 419\u2013436 (2006)","journal-title":"Numer. Linear Algebra Appl."},{"key":"20_CR15","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1016\/j.laa.2013.10.015","volume":"440","author":"A Muhi\u010d","year":"2014","unstructured":"Muhi\u010d, A., Plestenjak, B.: A method for computing all values $$\\lambda $$ such that $$A+\\lambda B$$ has a multiple eigenvalue. Linear Algebra Appl. 440, 345\u2013359 (2014)","journal-title":"Linear Algebra Appl."},{"issue":"4","key":"20_CR16","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/0898-1221(87)90137-4","volume":"14","author":"V Pan","year":"1987","unstructured":"Pan, V.: Algebraic complexity of computing polynomial zeros. Comput. Math. Appl. 14(4), 285\u2013304 (1987)","journal-title":"Comput. Math. Appl."},{"key":"20_CR17","doi-asserted-by":"crossref","first-page":"354","DOI":"10.1007\/BF02165411","volume":"13","author":"V Strassen","year":"1969","unstructured":"Strassen, V.: Gaussian elimination is not optimal. Num. Math. 13, 354\u2013356 (1969)","journal-title":"Num. Math."},{"key":"20_CR18","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1016\/0003-4916(73)90044-4","volume":"76","author":"TH Schucan","year":"1973","unstructured":"Schucan, T.H., Weidenm\u00fcller, H.A.: Perturbation theory for the effective interaction in nuclei. Ann. Phys. 76, 483\u2013501 (1973)","journal-title":"Ann. Phys."},{"volume-title":"Theory of Matrices","year":"1960","author":"FR Gantmacher","key":"20_CR19","unstructured":"Gantmacher, F.R.: Theory of Matrices, vol. 2. AMS Chelsea Publishing Company, Providence (1960)"},{"volume-title":"The Algebraic Eigenvalue Problem","year":"1965","author":"JH Wilkinson","key":"20_CR20","unstructured":"Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)"},{"issue":"4","key":"20_CR21","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1090\/qam\/11799","volume":"2","author":"H Wayland","year":"1945","unstructured":"Wayland, H.: Expansion of determinantal equations into polynomial form. Quart. Appl. Math. 2(4), 277\u2013305 (1945)","journal-title":"Quart. Appl. Math."}],"container-title":["Lecture Notes in Computer Science","Computer Algebra in Scientific Computing"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-45641-6_20","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2017,6,24]],"date-time":"2017-06-24T22:13:43Z","timestamp":1498342423000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-45641-6_20"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016]]},"ISBN":["9783319456409","9783319456416"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-45641-6_20","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2016]]}}}