{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T15:42:41Z","timestamp":1743003761910,"version":"3.40.3"},"publisher-location":"Cham","reference-count":27,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319449432"},{"type":"electronic","value":"9783319449449"}],"license":[{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2016]]},"DOI":"10.1007\/978-3-319-44944-9_10","type":"book-chapter","created":{"date-parts":[[2016,9,2]],"date-time":"2016-09-02T16:32:13Z","timestamp":1472833933000},"page":"106-116","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Convolutional Neural Networks for Pose Recognition in Binary Omni-directional Images"],"prefix":"10.1007","author":[{"given":"S. V.","family":"Georgakopoulos","sequence":"first","affiliation":[]},{"given":"K.","family":"Kottari","sequence":"additional","affiliation":[]},{"given":"K.","family":"Delibasis","sequence":"additional","affiliation":[]},{"given":"V. P.","family":"Plagianakos","sequence":"additional","affiliation":[]},{"given":"I.","family":"Maglogiannis","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,9,2]]},"reference":[{"issue":"1","key":"10_CR1","first-page":"1","volume":"23","author":"KK Delibasis","year":"2016","unstructured":"Delibasis, K.K., Georgakopoulos, S.V., Kottari, K., Plagianakos, V.P., Maglogiannis, I.: Geodesically-corrected Zernike descriptors for pose recognition in omni-directional images. Integr. Comput. Aided Eng. 23(1), 1\u201315 (2016)","journal-title":"Integr. Comput. Aided Eng."},{"doi-asserted-by":"crossref","unstructured":"Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia, pp. 675\u2013678. ACM, November 2014","key":"10_CR2","DOI":"10.1145\/2647868.2654889"},{"doi-asserted-by":"crossref","unstructured":"Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Is object localization for free?-weakly-supervised learning with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 685\u2013694 (2015)","key":"10_CR3","DOI":"10.1109\/CVPR.2015.7298668"},{"unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097\u20131105 (2012)","key":"10_CR4"},{"doi-asserted-by":"crossref","unstructured":"Cheng, J. Z., Ni, D., Chou, Y. H., Qin, J., Tiu, C. M., Chang, Y. C., Huang, C. S., Shen, D., Chen, C. M.: Computer-Aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in CT scans. Sci. Rep., 6, 1\u201313 (2016)","key":"10_CR5","DOI":"10.1038\/srep24454"},{"doi-asserted-by":"crossref","unstructured":"Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D. D., Chen, M.: Medical image classification with convolutional neural network. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 844\u2013848). IEEE, December 2014","key":"10_CR6","DOI":"10.1109\/ICARCV.2014.7064414"},{"key":"10_CR7","doi-asserted-by":"publisher","first-page":"569","DOI":"10.1016\/j.neuroimage.2014.06.077","volume":"101","author":"HI Suk","year":"2014","unstructured":"Suk, H.I., Lee, S.W., Shen, D.: Alzheimer\u2019s disease neuroimaging initiative: hierarchical feature representation and multimodal fusion with deep learning for AD\/MCI diagnosis. NeuroImage 101, 569\u2013582 (2014)","journal-title":"NeuroImage"},{"doi-asserted-by":"crossref","unstructured":"Junior, O. L., Delgado, D., Gon\u00e7alves, V., Nunes, U.: Trainable classifier-fusion schemes: an application to pedestrian detection. In: Intelligent Transportation Systems, vol. 2, October 2009","key":"10_CR8","DOI":"10.1109\/ITSC.2009.5309700"},{"issue":"9","key":"10_CR9","doi-asserted-by":"publisher","first-page":"758","DOI":"10.1016\/j.robot.2006.04.018","volume":"54","author":"H Tamimi","year":"2006","unstructured":"Tamimi, H., Andreasson, H., Treptow, A., Duckett, T., Zell, A.: Localization of mobile robots with omnidirectional vision using particle filter and iterative sift. Robot. Auton. Syst 54(9), 758\u2013765 (2006)","journal-title":"Robot. Auton. Syst"},{"doi-asserted-by":"crossref","unstructured":"Hwang, S. K., Billinghurst, M., Kim, W. Y.: Local descriptor by zernike moments for real-time keypoint matching. In: 2008 Congress on Image and Signal Processing, CISP 2008, vol. 2, pp. 781\u2013785. IEEE, May 2008","key":"10_CR10","DOI":"10.1109\/CISP.2008.651"},{"issue":"9","key":"10_CR11","doi-asserted-by":"publisher","first-page":"2530","DOI":"10.1016\/j.patcog.2006.12.003","volume":"40","author":"H Zhu","year":"2007","unstructured":"Zhu, H., Shu, H., Xia, T., Luo, L., Coatrieux, J.L.: Translation and scale invariants of Tchebichef moments. Pattern Recogn. 40(9), 2530\u20132542 (2007)","journal-title":"Pattern Recogn."},{"doi-asserted-by":"crossref","unstructured":"Shutler, J. D., Nixon, M. S.: Zernike velocity moments for description and recognition of moving shapes. In: BMVC, pp. 1\u201310, September 2001","key":"10_CR12","DOI":"10.5244\/C.15.72"},{"doi-asserted-by":"crossref","unstructured":"Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1385\u20131392. IEEE, June 2011","key":"10_CR13","DOI":"10.1109\/CVPR.2011.5995741"},{"key":"10_CR14","series-title":"IFIP Advances in Information and Communication Technology","first-page":"385","volume-title":"Artificial Intelligence Applications and Innovations","author":"K Kottari","year":"2014","unstructured":"Kottari, K., Delibasis, K., Plagianakos, V., Maglogiannis, I.: Fish-eye camera video processing and trajectory estimation using 3d human models. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) Artificial Intelligence Applications and Innovations. IFIP Advances in Information and Communication Technology, vol. 436, pp. 385\u2013394. Springer, Heidelberg (2014)"},{"issue":"11","key":"10_CR15","doi-asserted-by":"publisher","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y LeCun","year":"1998","unstructured":"LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278\u20132324 (1998)","journal-title":"Proc. IEEE"},{"key":"10_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"421","DOI":"10.1007\/978-3-642-35289-8_25","volume-title":"Neural Networks: Tricks of the Trade","author":"L Bottou","year":"2012","unstructured":"Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., M\u00fcller, K.-R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn. LNCS, vol. 7700, pp. 421\u2013436. Springer, Heidelberg (2012)"},{"doi-asserted-by":"crossref","unstructured":"Toshev, A., Szegedy, C.: Deeppose: human pose estimation via deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1653\u20131660 (2014)","key":"10_CR17","DOI":"10.1109\/CVPR.2014.214"},{"unstructured":"Kemmotsu, K., Tomonaka, T., Shiotani, S., Koketsu, Y., Iehara, M.: Recognizing human behaviors with vision sensors in a network robot system. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. l274\u20131279 (2006)","key":"10_CR18"},{"doi-asserted-by":"crossref","unstructured":"Zhou, Z., Chen, X., Chung, Y., He, Z., Han, T. X. Keller, M.: Activity analysis, summarization and visualization for indoor human activity monitoring. IEEE Trans. on Circuit and Systems for Video Technology, 18(11): 1489\u20131498 (2008)","key":"10_CR19","DOI":"10.1109\/TCSVT.2008.2005612"},{"doi-asserted-by":"crossref","unstructured":"Mei, C., Rives, P.: Single view point omnidirectional camera calibration from planar grids. In: IEEE International Conference on Robotics and Automation, (ICRA), pp. 3945\u20133950. IEEE, Rome (2007)","key":"10_CR20","DOI":"10.1109\/ROBOT.2007.364084"},{"key":"10_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1007\/11612032_3","volume-title":"Computer Vision \u2013 ACCV 2006","author":"H Li","year":"2006","unstructured":"Li, H., Hartley, R.I.: Plane-based calibration and auto-calibration of a fish-eye camera. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3851, pp. 21\u201330. Springer, Heidelberg (2006)"},{"issue":"11","key":"10_CR22","doi-asserted-by":"publisher","first-page":"1775","DOI":"10.1016\/0031-3203(96)00038-6","volume":"29","author":"S Shah","year":"1996","unstructured":"Shah, S., Aggarwal, J.: Intrinsic parameter calibration procedure for a high distortion fish-eye lens camera with distortion model and accuracy estimation. Pattern Recogn. 29(11), 1775\u20131788 (1996)","journal-title":"Pattern Recogn."},{"issue":"10","key":"10_CR23","doi-asserted-by":"publisher","first-page":"1771","DOI":"10.1109\/TVCG.2011.130","volume":"18","author":"J Wei","year":"2012","unstructured":"Wei, J., Li, C.F., Hu, S.M., Martin, R.R., Tai, C.L.: Fisheye video correction. IEEE Trans. Vis. Comput. Graph. 18(10), 1771\u20131783 (2012)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"doi-asserted-by":"crossref","unstructured":"Hasler, N., Ackermann, H., Rosenhahn, B., Thormahlen, T., Seidel, H.P.: Multilinear pose and body shape estimation of dressed subjects from image sets. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2010), pp. 1823\u20131830 (2010)","key":"10_CR24","DOI":"10.1109\/CVPR.2010.5539853"},{"unstructured":"http:\/\/resources.mpi-inf.mpg.de\/scandb\/","key":"10_CR25"},{"key":"10_CR26","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1016\/j.cviu.2014.06.011","volume":"128","author":"K Delibasis","year":"2014","unstructured":"Delibasis, K., Plagianakos, V., Maglogiannis, I.: Refinement of human silhouette segmentation in omni-directional indoor videos. Comput. Vision Image Underst. 128, 65\u201383 (2014)","journal-title":"Comput. Vision Image Underst."},{"doi-asserted-by":"crossref","unstructured":"Rufli, M., Scaramuzza, D., Siegwart, R.: Automatic detection of checkerboards on blurred and distorted images. In: Proceedings of the IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS 2008), pp. 3121\u20133126. Nice, France (2008)","key":"10_CR27","DOI":"10.1109\/IROS.2008.4650703"}],"container-title":["IFIP Advances in Information and Communication Technology","Artificial Intelligence Applications and Innovations"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-44944-9_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,9,2]],"date-time":"2020-09-02T00:03:57Z","timestamp":1599005037000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-44944-9_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016]]},"ISBN":["9783319449432","9783319449449"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-44944-9_10","relation":{},"ISSN":["1868-4238","1868-422X"],"issn-type":[{"type":"print","value":"1868-4238"},{"type":"electronic","value":"1868-422X"}],"subject":[],"published":{"date-parts":[[2016]]},"assertion":[{"value":"2 September 2016","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"AIAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"IFIP International Conference on Artificial Intelligence Applications and Innovations","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thessaloniki","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2016","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 September 2016","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2016","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aiai2016","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}