{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T05:53:06Z","timestamp":1725861186394},"publisher-location":"Cham","reference-count":13,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319422961"},{"type":"electronic","value":"9783319422978"}],"license":[{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2016]]},"DOI":"10.1007\/978-3-319-42297-8_22","type":"book-chapter","created":{"date-parts":[[2016,7,11]],"date-time":"2016-07-11T11:00:57Z","timestamp":1468234857000},"page":"229-238","source":"Crossref","is-referenced-by-count":1,"title":["Improving Deep Learning Accuracy with Noisy Autoencoders Embedded Perturbative Layers"],"prefix":"10.1007","author":[{"given":"Lin","family":"Xia","sequence":"first","affiliation":[]},{"given":"Xiaolong","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,7,12]]},"reference":[{"key":"22_CR1","unstructured":"Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the International Conference on Artificial Intelligence and Statistics, pp. 249\u2013256 (2010)"},{"key":"22_CR2","first-page":"625","volume":"11","author":"D Erhan","year":"2010","unstructured":"Erhan, D., Bengio, Y., Courville, A., et al.: Why does unsupervised pre-training help deep learning. J. Mach. Learn. Res. 11, 625\u2013660 (2010)","journal-title":"J. Mach. Learn. Res."},{"key":"22_CR3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000006","volume":"2","author":"Y Bengio","year":"2009","unstructured":"Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1\u2013127 (2009)","journal-title":"Found. Trends Mach. Learn."},{"key":"22_CR4","first-page":"3371","volume":"11","author":"P Vincent","year":"2010","unstructured":"Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371\u20133408 (2010)","journal-title":"J. Mach. Learn. Res."},{"key":"22_CR5","doi-asserted-by":"crossref","unstructured":"Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio,Y.: Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th International Conference on Machine Learning, pp. 833\u2013840 (2011)","DOI":"10.1007\/978-3-642-23783-6_41"},{"key":"22_CR6","unstructured":"Chen, M., Xu, Z., Weinberger, Z., Sha, F.: Marginalized denoising autoencoders for domain adaptation. In: Langford, J., Pineau, J. (eds.) Proceedings of the 29th International Conference on Machine Learning, pp. 767\u2013774 (2012)"},{"key":"22_CR7","unstructured":"Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580 (2012)"},{"key":"22_CR8","first-page":"1929","volume":"15","author":"N Srivastava","year":"2014","unstructured":"Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929\u20131958 (2014)","journal-title":"J. Mach. Learn. Res."},{"key":"22_CR9","unstructured":"Bengio, Y., Courville, A., Vincent, P.: Unsupervised feature learning and deep learning: a review and new perspectives. arXiv:1206.5538 (2012)"},{"key":"22_CR10","doi-asserted-by":"crossref","unstructured":"Bengio, Y.: Deep Learning of Representations: Looking Forward. arXiv:1305.0445 (2013)","DOI":"10.1007\/978-3-642-39593-2_1"},{"key":"22_CR11","doi-asserted-by":"crossref","unstructured":"Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096\u20131103 (2008)","DOI":"10.1145\/1390156.1390294"},{"key":"22_CR12","unstructured":"Chen, M., Weinberger, K., Sha, F., Bengio, Y.: Marginalized denoising autoencoders for nonlinear representation. In: Proceedings of the 31th International Conference on Machine Learning, pp. 1476\u20131484 (2014)"},{"key":"22_CR13","unstructured":"Zhou, Y., Arpit, D., Nwogu, I., Govindaraju, V.: Is Joint Training Better for Deep Auto-Encoders? arXiv:1405.1380 (2015)"}],"container-title":["Lecture Notes in Computer Science","Intelligent Computing Methodologies"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-42297-8_22","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,2]],"date-time":"2022-07-02T19:20:24Z","timestamp":1656789624000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-42297-8_22"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016]]},"ISBN":["9783319422961","9783319422978"],"references-count":13,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-42297-8_22","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2016]]}}}