{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T04:25:33Z","timestamp":1725855933924},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319396002"},{"type":"electronic","value":"9783319396019"}],"license":[{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2016]]},"DOI":"10.1007\/978-3-319-39601-9_6","type":"book-chapter","created":{"date-parts":[[2016,5,21]],"date-time":"2016-05-21T23:33:08Z","timestamp":1463873588000},"page":"59-68","source":"Crossref","is-referenced-by-count":1,"title":["SVM Based Predictive Model for SGA Detection"],"prefix":"10.1007","author":[{"given":"Haowen","family":"Mo","sequence":"first","affiliation":[]},{"given":"Jianqiang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Shi","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Hui","family":"Pan","sequence":"additional","affiliation":[]},{"given":"Ji-Jiang","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Qing","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Rui","family":"Mao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,5,21]]},"reference":[{"key":"6_CR1","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.earlhumdev.2004.10.015","volume":"81","author":"JO Gardosi","year":"2005","unstructured":"Gardosi, J.O.: Prematurity and fetal growth restriction. Early Hum. Dev. 81, 43\u201349 (2005)","journal-title":"Early Hum. Dev."},{"key":"6_CR2","doi-asserted-by":"crossref","first-page":"1113","DOI":"10.1136\/bmj.38629.587639.7C","volume":"331","author":"J Gardosi","year":"2005","unstructured":"Gardosi, J., Kady, S.M., McGeown, P., Francis, A., Tonks, A.: Classification of stillbirth by relevant condition at death (ReCoDe): population based cohort study. BMJ 331, 1113\u20131117 (2005)","journal-title":"BMJ"},{"issue":"5","key":"6_CR3","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1097\/01.ede.0000173040.55187.fa","volume":"16","author":"O Basso","year":"2005","unstructured":"Basso, O., Frydenberg, M., Olsen, S.F., Olsen, J.: Two definitions of \u201csmall size at birth\u201d as predictors of motor development at sixmonths. Epidemiology 16(5), 657\u2013663 (2005)","journal-title":"Epidemiology"},{"issue":"2","key":"6_CR4","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/0378-3782(89)90118-7","volume":"19","author":"M Ounsted","year":"1989","unstructured":"Ounsted, M., Moar, V.A., Scott, A.: Small-for-dates babies, gestationalage, and developmental ability at 7 years. Early Hum. Dev. 19(2), 77\u201386 (1989)","journal-title":"Early Hum. Dev."},{"issue":"3","key":"6_CR5","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1016\/S0887-8994(01)00381-2","volume":"26","author":"K Sommerfelt","year":"2002","unstructured":"Sommerfelt, K., Sonnander, K., Skranes, J., Andersson, H.W., Ahlsten, G., Ellertsen, B., et al.: Neuropsychologic and motor function in small-for-gestation preschoolers. Pediatr. Neurol. 26(3), 186\u2013191 (2002)","journal-title":"Pediatr. Neurol."},{"key":"6_CR6","doi-asserted-by":"crossref","first-page":"258","DOI":"10.1002\/uog.1806","volume":"25","author":"PG Lindqvist","year":"2005","unstructured":"Lindqvist, P.G., Molin, J.: Does antenatal identification of small-for-gestational age fetuses significantly improve their outcome? Ultrasound Obstet. Gynecol. 25, 258\u2013264 (2005)","journal-title":"Ultrasound Obstet. Gynecol."},{"issue":"1","key":"6_CR7","first-page":"30","volume":"69","author":"J Li","year":"2015","unstructured":"Li, J., Liu, C., Liu, B., Mao, R., Wang, Y., Chen, S., Pan, H., Wang, Q.: Diversity-aware retrieval of medical records. Comput. Ind. 69(1), 30\u201339 (2015)","journal-title":"Comput. Ind."},{"issue":"1","key":"6_CR8","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.compind.2015.01.012","volume":"69","author":"JJ Yang","year":"2015","unstructured":"Yang, J.J., Li, J., Mulder, J., Wang, Y., Wang, Q.: Emerging Information Technologies for Enhanced Healthcare. Comput. Ind. 69(1), 3\u201311 (2015)","journal-title":"Comput. Ind."},{"key":"6_CR9","first-page":"730","volume":"5","author":"SJ Hastie","year":"1989","unstructured":"Hastie, S.J., Danskin, F., Neilson, J.P., Whittle, M.J.: Prediction of the small for gestational age twin fetus by doppler umbilical artery waveform analysis. Obstet. Gynecol. 5, 730\u2013733 (1989)","journal-title":"Obstet. Gynecol."},{"issue":"2","key":"6_CR10","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1159\/000321694","volume":"29","author":"G Karagianis","year":"2011","unstructured":"Karagianis, G., Akolekar, R.: Prediction of small-for-gestation neonates from biophysical and biochemical markers at 11\u201313 weeks. Fetal Diagn. Ther. 29(2), 148\u2013154 (2011)","journal-title":"Fetal Diagn. Ther."},{"key":"6_CR11","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.cmpb.2015.10.007","volume":"124","author":"JJ Yang","year":"2016","unstructured":"Yang, J.J., Li, J., Shen, R., Zeng, Y., Wang, Q.: Exploiting ensemble learning for automatic cataract detection and grading. Comput. Methods Program. Biomed. 124, 45\u201357 (2016)","journal-title":"Comput. Methods Program. Biomed."},{"key":"6_CR12","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4757-2440-0","volume-title":"The Nature of Statistical Learning Theory","author":"VN Vapnik","year":"1995","unstructured":"Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)"},{"key":"6_CR13","unstructured":"Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of Fifth Annual Workshop Computing Learning Theory, pp. 144\u2013152 (1995)"},{"issue":"5","key":"6_CR14","doi-asserted-by":"crossref","first-page":"988","DOI":"10.1109\/72.788640","volume":"10","author":"VN Vapnik","year":"1999","unstructured":"Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988\u2013999 (1999)","journal-title":"IEEE Trans. Neural Netw."},{"key":"6_CR15","unstructured":"Jianguo, X.: A Study on Application of Support Vector Machine in GPC with Real Test Analysis [D]. Master\u2019s degree thesis, Zhejiang University (2006)"},{"issue":"2","key":"6_CR16","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1023\/B:COAP.0000026884.66338.df","volume":"28","author":"GM Fung","year":"2004","unstructured":"Fung, G.M., Mangasarian, O.L.: A feature selection newton method support vector machine classification. Comput. Optim. Appl. 28(2), 185\u2013202 (2004)","journal-title":"Comput. Optim. Appl."},{"key":"6_CR17","doi-asserted-by":"crossref","unstructured":"Karatsiolis, S., Schizas, C.N.: Region based support vector machine algorithm for medical diagnosis on Pima Indian Diabetes dataset. In: Proceedings of the BIBE, Larnaca, Cyprus, 11\u201313 November 2012 (2012)","DOI":"10.1109\/BIBE.2012.6399663"},{"key":"6_CR18","doi-asserted-by":"crossref","unstructured":"Elshazly, H.I., Elkorany, A.M., Hassanien, A.E.: Lymph diseases diagnosis approach based on support vector machines with different kernel functions. In: 2014 9th International Computer Engineering & Systems (ICCES), 22\u201323 December 2014, pp. 198\u2013203 (2014)","DOI":"10.1109\/ICCES.2014.7030956"},{"key":"6_CR19","first-page":"175","volume":"40","author":"PM Bentley","year":"1992","unstructured":"Bentley, P.M., McDonnell, J.T.E.: Wavelet transforms: an introduction. IEEE J. Electron. Commun. Eng. 40, 175\u2013185 (1992)","journal-title":"IEEE J. Electron. Commun. Eng."},{"issue":"3","key":"6_CR20","first-page":"172","volume":"95","author":"M Liu","year":"2015","unstructured":"Liu, M., Wang, Q., et al.: Status assessment of preconception health risk exposure in Chinese reproductive women during 2010-2012. Natl. Med. J. China 95(3), 172\u2013175 (2015)","journal-title":"Natl. Med. J. China"}],"container-title":["Lecture Notes in Computer Science","Inclusive Smart Cities and Digital Health"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-39601-9_6","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2017,6,24]],"date-time":"2017-06-24T14:21:43Z","timestamp":1498314103000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-39601-9_6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016]]},"ISBN":["9783319396002","9783319396019"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-39601-9_6","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2016]]}}}