{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T03:42:04Z","timestamp":1725853324148},"publisher-location":"Cham","reference-count":21,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319317526"},{"type":"electronic","value":"9783319317533"}],"license":[{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2016]]},"DOI":"10.1007\/978-3-319-31753-3_6","type":"book-chapter","created":{"date-parts":[[2016,4,11]],"date-time":"2016-04-11T09:06:43Z","timestamp":1460365603000},"page":"65-76","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Locally Weighted Ensemble Learning for Regression"],"prefix":"10.1007","author":[{"given":"Man","family":"Yu","sequence":"first","affiliation":[]},{"given":"Zongxia","family":"Xie","sequence":"additional","affiliation":[]},{"given":"Hong","family":"Shi","sequence":"additional","affiliation":[]},{"given":"Qinghua","family":"Hu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,4,12]]},"reference":[{"issue":"1","key":"6_CR1","doi-asserted-by":"publisher","first-page":"61","DOI":"10.14257\/ijdta.2014.7.1.06","volume":"7","author":"V Bijalwan","year":"2014","unstructured":"Bijalwan, V., Kumar, V., Kumari, P., Pascual, J.: Knn based machine lear-ning approach for text and document mining. Int. J. Database Theor. Appl. 7(1), 61\u201370 (2014)","journal-title":"Int. J. Database Theor. Appl."},{"issue":"3","key":"6_CR2","doi-asserted-by":"publisher","first-page":"983","DOI":"10.1109\/TPWRS.2008.922526","volume":"23","author":"H Bludszuweit","year":"2008","unstructured":"Bludszuweit, H., Dom\u00ednguez-Navarro, J.A., Llombart, A.: Statistical analysis of wind power forecast error. IEEE Trans. Power Syst. 23(3), 983\u2013991 (2008)","journal-title":"IEEE Trans. Power Syst."},{"issue":"6","key":"6_CR3","doi-asserted-by":"publisher","first-page":"888","DOI":"10.1162\/neco.1992.4.6.888","volume":"4","author":"L Bottou","year":"1992","unstructured":"Bottou, L., Vapnik, V.: Local learning algorithms. Neural Comput. 4(6), 888\u2013900 (1992)","journal-title":"Neural Comput."},{"key":"6_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"174","DOI":"10.1007\/978-3-540-25966-4_17","volume-title":"Multiple Classifier Systems","author":"L Didaci","year":"2004","unstructured":"Didaci, L., Giacinto, G.: Dynamic classifier selection by adaptive k-nearest-neighbourhood rule. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 174\u2013183. Springer, Heidelberg (2004)"},{"issue":"6","key":"6_CR5","doi-asserted-by":"publisher","first-page":"1227","DOI":"10.1109\/TPAMI.2012.57","volume":"34","author":"B Geng","year":"2012","unstructured":"Geng, B., Tao, D., Xu, C., Yang, L., Hua, X.S.: Ensemble manifold regularization. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1227\u20131233 (2012)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"6_CR6","doi-asserted-by":"crossref","unstructured":"Haltmeier, M.: Block-sparse analysis regularization of ill-posed problems via l 2, 1-minimization. In: 18th International Conference on Methods and Models in Automation and Robotics, pp. 520\u2013523 (2013)","DOI":"10.1109\/MMAR.2013.6669964"},{"issue":"1","key":"6_CR7","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1162\/neco.1991.3.1.79","volume":"3","author":"RA Jacobs","year":"1991","unstructured":"Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79\u201387 (1991)","journal-title":"Neural Comput."},{"issue":"2","key":"6_CR8","doi-asserted-by":"publisher","first-page":"181","DOI":"10.1162\/neco.1994.6.2.181","volume":"6","author":"MI Jordan","year":"1994","unstructured":"Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the em algorithm. Neural Comput. 6(2), 181\u2013214 (1994)","journal-title":"Neural Comput."},{"key":"6_CR9","first-page":"231","volume":"7","author":"A Krogh","year":"1995","unstructured":"Krogh, A., Vedelsby, J., et al.: Neural network ensembles, cross validation, and active learning. Adv. Neural Inf. Process. Syst. 7, 231\u2013238 (1995)","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"6_CR10","doi-asserted-by":"publisher","first-page":"581","DOI":"10.1016\/j.neucom.2012.07.026","volume":"99","author":"L Li","year":"2013","unstructured":"Li, L., Zou, B., Hu, Q., Wu, X., Yu, D.: Dynamic classifier ensemble using classification confidence. Neurocomputing 99, 581\u2013591 (2013)","journal-title":"Neurocomputing"},{"issue":"10","key":"6_CR11","doi-asserted-by":"publisher","first-page":"1399","DOI":"10.1016\/S0893-6080(99)00073-8","volume":"12","author":"Y Liu","year":"1999","unstructured":"Liu, Y., Yao, X.: Ensemble learning via negative correlation. Neural Netw. 12(10), 1399\u20131404 (1999)","journal-title":"Neural Netw."},{"issue":"1","key":"6_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TFUZZ.2005.861602","volume":"14","author":"JC Lo","year":"2006","unstructured":"Lo, J.C., Lin, M.L.: Robust \n \n \n \n $${\\rm H}_{\\infty }$$\n control for fuzzy systems with frobenius norm-bounded uncertainties. IEEE Trans. Fuzzy Syst. 14(1), 1\u201315 (2006)","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"6_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1007\/978-3-642-03070-3_15","volume-title":"Machine Learning and Data Mining in Pattern Recognition","author":"J Mendes-Moreira","year":"2009","unstructured":"Mendes-Moreira, J., Jorge, A.M., Soares, C., de Sousa, J.F.: Ensemble learning: a study on different variants of the dynamic selection approach. In: Perner, P. (ed.) MLDM 2009. LNCS, vol. 5632, pp. 191\u2013205. Springer, Heidelberg (2009)"},{"issue":"1","key":"6_CR14","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1145\/2379776.2379786","volume":"45","author":"J Mendes-Moreira","year":"2012","unstructured":"Mendes-Moreira, J., Soares, C., Jorge, A.M., Sousa, J.F.D.: Ensemble approaches for regression: a survey. ACM Comput. Surv. 45(1), 10 (2012)","journal-title":"ACM Comput. Surv."},{"issue":"4","key":"6_CR15","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1016\/j.inffus.2012.01.001","volume":"13","author":"G Navarro-Arribas","year":"2012","unstructured":"Navarro-Arribas, G., Torra, V.: Information fusion in data privacy: a survey. Inf. Fusion 13(4), 235\u2013244 (2012)","journal-title":"Inf. Fusion"},{"key":"6_CR16","unstructured":"Perrone, M.P., Cooper, L.N.: When Networks Disagree: Ensemble Methods for Hybrid Neural Networks. Chapman and Hall, (1993)"},{"key":"6_CR17","unstructured":"Seeger, M.: Bayesian model selection for support vector machines, gaussian processes and other kernel classifiers. In: Proceedings of the 13th Annual Conference on Neural Information Processing Systems, pp. 603\u2013609, no. 161324 (2000)"},{"issue":"1","key":"6_CR18","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1016\/j.inffus.2006.11.002","volume":"9","author":"A Tsymbal","year":"2008","unstructured":"Tsymbal, A., Pechenizkiy, M., Cunningham, P., Puuronen, S.: Dynamic integration of classifiers for handling concept drift. Inf. Fusion 9(1), 56\u201368 (2008)","journal-title":"Inf. Fusion"},{"issue":"6","key":"6_CR19","doi-asserted-by":"publisher","first-page":"893","DOI":"10.1162\/neco.1993.5.6.893","volume":"5","author":"V Vapnik","year":"1993","unstructured":"Vapnik, V., Bottou, L.: Local algorithms for pattern recognition and dependencies estimation. Neural Comput. 5(6), 893\u2013909 (1993)","journal-title":"Neural Comput."},{"key":"6_CR20","doi-asserted-by":"crossref","unstructured":"Woods, K., Bowyer, K., Kegelmeyer Jr., W.P.: Combination of multiple classifiers using local accuracy estimates. In: Computer Vision and Pattern Recognition, pp. 391\u2013396 (1996)","DOI":"10.1109\/CVPR.1996.517102"},{"key":"6_CR21","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1016\/j.inffus.2013.11.003","volume":"20","author":"XC Yin","year":"2014","unstructured":"Yin, X.C., Huang, K., Yang, C., Hao, H.W.: Convex ensemble learning with sparsity and diversity. Inf. Fusion 20, 49\u201359 (2014)","journal-title":"Inf. Fusion"}],"container-title":["Lecture Notes in Computer Science","Advances in Knowledge Discovery and Data Mining"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-31753-3_6","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T20:03:36Z","timestamp":1559419416000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-31753-3_6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016]]},"ISBN":["9783319317526","9783319317533"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-31753-3_6","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2016]]},"assertion":[{"value":"12 April 2016","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}}]}}