{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T00:20:38Z","timestamp":1740097238515,"version":"3.37.3"},"publisher-location":"Cham","reference-count":23,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319308579"},{"type":"electronic","value":"9783319308586"}],"license":[{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2016]]},"DOI":"10.1007\/978-3-319-30858-6_25","type":"book-chapter","created":{"date-parts":[[2016,3,18]],"date-time":"2016-03-18T11:13:12Z","timestamp":1458299592000},"page":"284-295","source":"Crossref","is-referenced-by-count":0,"title":["Input Data Adaptive Learning (IDAL) for Sub-acute Ischemic Stroke Lesion Segmentation"],"prefix":"10.1007","author":[{"given":"Michael","family":"Goetz","sequence":"first","affiliation":[]},{"given":"Christian","family":"Weber","sequence":"additional","affiliation":[]},{"given":"Christoph","family":"Kolb","sequence":"additional","affiliation":[]},{"given":"Klaus","family":"Maier-Hein","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"issue":"7","key":"25_CR1","doi-asserted-by":"publisher","first-page":"790","DOI":"10.1016\/j.media.2013.04.013","volume":"17","author":"E Konukoglu","year":"2013","unstructured":"Konukoglu, E., Glocker, B., Zikic, D., Criminisi, A.: Neighbourhood approximation using randomized forests. Med. Image Anal. 17(7), 790\u2013804 (2013)","journal-title":"Med. Image Anal."},{"issue":"1","key":"25_CR2","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/s10994-006-6226-1","volume":"63","author":"P Geurts","year":"2006","unstructured":"Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3\u201342 (2006)","journal-title":"Mach. Learn."},{"key":"25_CR3","unstructured":"Goetz, M., Weber, C., Stieltjes, B., Maier-Hein, K.H.: Learning from small amounts of labeled data in a brain tumor classification task. In: NIPS Workshop on Transfer and Multi-task Learning: Theory Meets Practice (2014)"},{"key":"25_CR4","unstructured":"Goetz, M., Weber, C., Bloecher, J., Stieltjes, B., Meinzer, H.P., Maier-Hein, K.H.: Extremely randomized trees based brain tumor segmentation. In: Proceedings of BRATS Challenge-MICCAI (2014)"},{"issue":"1","key":"25_CR5","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1109\/TMI.2015.2463078","volume":"35","author":"M Goetz","year":"2016","unstructured":"Goetz, M., Weber, C., Binczyk, F., Polanska, J., Tarnawski, R., Bobek-Billewicz, B., Koethe, U., Kleesiek, J., Stieltjes, B., Maier-Hein, K.H.: DALSA: domain adaptation for supervised learning from sparsely annotated MR images. IEEE Trans. Med. Imaging 35(1), 184\u2013196 (2016). doi:\n 10.1109\/TMI.2015.2463078","journal-title":"IEEE Trans. Med. Imaging"},{"key":"25_CR6","doi-asserted-by":"publisher","first-page":"89","DOI":"10.1016\/j.jneumeth.2014.11.011","volume":"240","author":"O Maier","year":"2015","unstructured":"Maier, O., Wilms, M., Gablentz, J., Kr\u00e4mer, U.M., M\u00fcnte, T.F., Handels, H.: Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J. Neurosci. Methods 240, 89\u2013100 (2015)","journal-title":"J. Neurosci. Methods"},{"key":"25_CR7","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1186\/s12938-015-0064-y","volume":"14","author":"X Sun","year":"2015","unstructured":"Sun, X., Shi, L., Luo, Y., et al.: Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions. Biomed. Eng. Online 14, 73 (2015). doi:\n 10.1186\/s12938-015-0064-y","journal-title":"Biomed. Eng. Online"},{"key":"25_CR8","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1016\/j.nicl.2014.08.008","volume":"6","author":"RT Shinohara","year":"2014","unstructured":"Shinohara, R.T., Sweeney, E.M., Goldsmith, J., et al.: Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin. 6, 9\u201319 (2014). doi:\n 10.1016\/j.nicl.2014.08.008","journal-title":"Neuroimage Clin."},{"key":"25_CR9","volume-title":"MRI: The Basics","author":"RH Hashemi","year":"2012","unstructured":"Hashemi, R.H., Bradley, W.G., Lisanti, C.J.: MRI: The Basics. Lippincott Williams & Wilkins, Philadelphia (2012)"},{"issue":"1","key":"25_CR10","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1016\/j.media.2015.06.010","volume":"24","author":"A Opbroek van","year":"2015","unstructured":"van Opbroek, A., Vernooij, M.W., Ikram, M.A., de Bruijne, M.: Weighting training images by maximizing distribution similarity for supervised segmentation across scanners. Med. Image Anal. 24(1), 245\u2013254 (2015). ISSN: 1361-8415, \n http:\/\/dx.doi.org\/10.1016\/j.media.2015.06.010","journal-title":"Med. Image Anal."},{"key":"25_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1007\/978-3-642-40760-4_9","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2013","author":"D Zikic","year":"2013","unstructured":"Zikic, D., Glocker, B., Criminisi, A.: Atlas encoding by randomized forests for efficient label propagation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 66\u201373. Springer, Heidelberg (2013)"},{"issue":"12","key":"25_CR12","doi-asserted-by":"publisher","first-page":"2368","DOI":"10.1109\/TPAMI.2011.131","volume":"33","author":"C Liu","year":"2011","unstructured":"Liu, C., Yuen, J., Torralba, A.: Nonparametric scene parsing via label transfer. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2368\u20132382 (2011). doi:\n 10.1109\/TPAMI.2011.131","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"25_CR13","doi-asserted-by":"publisher","first-page":"978","DOI":"10.1109\/TPAMI.2010.147","volume":"33","author":"C Liu","year":"2011","unstructured":"Liu, C., Yuen, J., Torralba, A.: SIFT flow: dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 978\u2013994 (2011b). \n http:\/\/doi.org\/10.1109\/TPAMI.2010.147","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"25_CR14","doi-asserted-by":"crossref","unstructured":"Hays, J., Efros, A., et al.: IM2GPS: estimating geographic information from a single image. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), pp. 1\u20138. IEEE (2008)","DOI":"10.1109\/CVPR.2008.4587784"},{"key":"25_CR15","unstructured":"Russell, B., Torralba, A., Liu, C., Fergus, R., Freeman, W.T.: Object recognition by scene alignment. In: Advances in Neural Information Processing Systems, pp. 1241\u20131248 (2007)"},{"issue":"2","key":"25_CR16","doi-asserted-by":"publisher","first-page":"329","DOI":"10.1007\/s11263-012-0574-z","volume":"101","author":"J Tighe","year":"2013","unstructured":"Tighe, J., Lazebnik, S.: Superparsing, scalable nonparametric image parsing with superpixels. Int. J. Comput. Vision 101(2), 329\u2013349 (2013)","journal-title":"Int. J. Comput. Vision"},{"key":"25_CR17","doi-asserted-by":"crossref","unstructured":"Goetz, M., Skornitzke, S., Weber, C., Fritz, F., Mayer, P., Koell, M., Stiller, W., Maier-Hein, K.H.: Machine-learning based comparison of CT-perfusion maps and dual energy CT for pancreatic tumor detection. In: Proceedings of SPIE Medical Imaging (2016) (to appear)","DOI":"10.1117\/12.2216645"},{"key":"25_CR18","doi-asserted-by":"crossref","unstructured":"Goetz, M., Heim, E., Maerz, K., Norajitra, T., Hafezi, M., Fard, N., Mehrabi, A., Knoll, M., Weber, C., Maier-Hein, L., Maier-Hein, K.: A learning-based, fully automatic liver tumor segmentation pipeline based on sparsely annotated training data. In: Proceedings of SPIE Medical Imaging (2016) (to appear)","DOI":"10.1117\/12.2217655"},{"key":"25_CR19","unstructured":"ISLES: Ischemic Stroke Lesion Segmentation, MICCAI Challenge (2015). \n http:\/\/www.isles-challenge.org\/"},{"key":"25_CR20","doi-asserted-by":"publisher","unstructured":"Kabir, Y., Dojat, M., Scherrer, B., Garbay, C., Forbes, F.: Multimodal MRI segmentation of ischemic stroke lesions. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2007), 22\u201326 August 2007, pp. 1595\u20131598 (2007). doi:\n 10.1109\/IEMBS.2007.4352610","DOI":"10.1109\/IEMBS.2007.4352610"},{"key":"25_CR21","unstructured":"Proceeding of the Ischemic Stroke Lesion Segmentation (www.isles-challenge.org). \n http:\/\/www.isles-challenge.org\/pdf\/20150930_ISLES2015_Proceedings.pdf"},{"key":"25_CR22","unstructured":"Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169\u20132178. IEEE (2006)"},{"key":"25_CR23","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1016\/S0079-6123(06)55002-2","volume":"155","author":"A Oliva","year":"2006","unstructured":"Oliva, A., Torralba, A.: Building the gist of a scene: the role of global image features in recognition. Prog. Brain Res. 155, 23\u201336 (2006). Chapter 2","journal-title":"Prog. Brain Res."}],"container-title":["Lecture Notes in Computer Science","Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-30858-6_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T15:16:13Z","timestamp":1559402173000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-30858-6_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016]]},"ISBN":["9783319308579","9783319308586"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-30858-6_25","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2016]]}}}