{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T20:39:52Z","timestamp":1725914392189},"publisher-location":"Cham","reference-count":28,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319295039"},{"type":"electronic","value":"9783319295046"}],"license":[{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2016]]},"DOI":"10.1007\/978-3-319-29504-6_24","type":"book-chapter","created":{"date-parts":[[2016,1,28]],"date-time":"2016-01-28T05:06:30Z","timestamp":1453957590000},"page":"237-247","source":"Crossref","is-referenced-by-count":3,"title":["Application of Bio-inspired Methods Within Cluster Forest Algorithm"],"prefix":"10.1007","author":[{"given":"Jan","family":"Janou\u0161ek","sequence":"first","affiliation":[]},{"given":"Petr","family":"Gajdo\u0161","sequence":"additional","affiliation":[]},{"given":"Michal","family":"Radeck\u00fd","sequence":"additional","affiliation":[]},{"given":"V\u00e1clav","family":"Sn\u00e1\u0161el","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,1,29]]},"reference":[{"issue":"1","key":"24_CR1","doi-asserted-by":"publisher","first-page":"100","DOI":"10.2307\/2346830","volume":"28","author":"JA Hartigan","year":"1979","unstructured":"Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A k-means clustering algorithm. Appl. Stat. 28(1), 100\u2013108 (1979). doi:\n 10.2307\/2346830","journal-title":"Appl. Stat."},{"key":"24_CR2","doi-asserted-by":"crossref","unstructured":"Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. (Springer Series in Statistics). Springer (2009)","DOI":"10.1007\/978-0-387-84858-7"},{"key":"24_CR3","doi-asserted-by":"publisher","unstructured":"Cinar, G., Principe, J.: Clustering of time series using a hierarchical linear dynamical system. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6741\u20136745 (2014). doi:\n 10.1109\/ICASSP.2014.6854905","DOI":"10.1109\/ICASSP.2014.6854905"},{"key":"24_CR4","unstructured":"Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, pp. 226\u2013231. AAAI Press (1996)"},{"key":"24_CR5","doi-asserted-by":"crossref","unstructured":"Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: Ordering Points to Identify the Clustering Structure, pp. 49\u201360. ACM Press (1999)","DOI":"10.1145\/304181.304187"},{"key":"24_CR6","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4757-0450-1","volume-title":"Pattern Recognition with Fuzzy Objective Function Algorithms","author":"JC Bezdek","year":"1981","unstructured":"Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell, MA (1981)"},{"issue":"11","key":"24_CR7","doi-asserted-by":"publisher","first-page":"3950","DOI":"10.1016\/j.patcog.2012.04.031","volume":"45","author":"Miin-Shen Yang","year":"2012","unstructured":"Yang, M.-S., Lai, C.-Y., Lin, C.-Y.: A robust \n \n \n \n $$\\{$$\n \n \n {\n \n \n EM\n \n \n \n $$\\}$$\n \n \n }\n \n \n clustering algorithm for gaussian mixture models. Pattern Recogn. 45(11), 3950\u20133961 (2012). doi:\n 10.1016\/j.patcog.2012.04.031","journal-title":"Pattern Recognition"},{"key":"24_CR8","doi-asserted-by":"publisher","unstructured":"Yang, P., Huang, B.: A spectral clustering algorithm based on normalized cuts. In: 2008 International Conference on Computer Science and Software Engineering, vol. 4, pp. 329\u2013331 (2008). doi:\n 10.1109\/CSSE.2008.910","DOI":"10.1109\/CSSE.2008.910"},{"key":"24_CR9","unstructured":"Madhulatha, T.S.: An overview on clustering methods. \n arXiv:1205.1117"},{"key":"24_CR10","doi-asserted-by":"publisher","first-page":"242","DOI":"10.1016\/j.jss.2014.04.046","volume":"95","author":"M Lu","year":"2014","unstructured":"Lu, M., Qin, Z., Cao, Y., Liu, Z., Wang, M.: Scalable news recommendation using multi-dimensional similarity and Jaccard-Kmeans clustering. J. Syst. Softw. 95, 242\u2013251 (2014). doi:\n 10.1016\/j.jss.2014.04.046","journal-title":"J. Syst. Softw."},{"key":"24_CR11","doi-asserted-by":"publisher","first-page":"346","DOI":"10.1016\/j.neucom.2014.04.037","volume":"144","author":"S Zeng","year":"2014","unstructured":"Zeng, S., Huang, R., Kang, Z., Sang, N.: Image segmentation using spectral clustering of gaussian mixture models. Neurocomputing 144, 346\u2013356 (2014). doi:\n 10.1016\/j.neucom.2014.04.037","journal-title":"Neurocomputing"},{"key":"24_CR12","doi-asserted-by":"publisher","unstructured":"Sirbu, A., Czibula, G., Bocicor, M.: Dynamic clustering of gene expression data using a fuzzy approach. In: 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2014, Timisoara, Romania, 22\u201325 Sept 2014, pp. 220\u2013227 (2014). doi:\n 10.1109\/SYNASC.2014.37","DOI":"10.1109\/SYNASC.2014.37"},{"key":"24_CR13","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1016\/j.patrec.2013.10.017","volume":"37","author":"F Schwenker","year":"2014","unstructured":"Schwenker, F., Trentin, E.: Pattern classification and clustering: a review of partially supervised learning approaches. Pattern Recogn. Lett. 37, 4\u201314 (2014). doi:\n 10.1016\/j.patrec.2013.10.017","journal-title":"Pattern Recogn. Lett."},{"issue":"2","key":"24_CR14","doi-asserted-by":"publisher","first-page":"227","DOI":"10.1016\/j.im.2014.11.001","volume":"52","author":"I Bose","year":"2015","unstructured":"Bose, I., Chen, X.: Detecting the migration of mobile service customers using fuzzy clustering. Inf. Manage. 52(2), 227\u2013238 (2015). doi:\n 10.1016\/j.im.2014.11.001","journal-title":"Inf. Manage."},{"key":"24_CR15","doi-asserted-by":"publisher","first-page":"12","DOI":"10.1186\/1748-7188-9-12","volume":"9","author":"M Modzelewski","year":"2014","unstructured":"Modzelewski, M., Dojer, N.: MSARC: multiple sequence alignment by residue clustering. Algorithms Mol. Biol. 9, 12 (2014). doi:\n 10.1186\/1748-7188-9-12","journal-title":"Algorithms Mol. Biol."},{"issue":"1","key":"24_CR16","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45(1), 5\u201332 (2001). doi:\n 10.1023\/A:1010933404324","journal-title":"Mach. Learn."},{"key":"24_CR17","unstructured":"Yan, D.,\u00a0Chen, A., Jordan, M.I.: Cluster Forests. \n arXiv:1104.2930"},{"issue":"3","key":"24_CR18","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1145\/601858.601862","volume":"31","author":"M Halkidi","year":"2002","unstructured":"Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering validity checking methods: part ii. ACM Sigmod Record 31(3), 19\u201327 (2002)","journal-title":"ACM Sigmod Record"},{"key":"24_CR19","doi-asserted-by":"publisher","unstructured":"Shi, J., Malik, J.: Normalized cuts and image segmentation. In: 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997. Proceedings, pp. 731\u2013737 (1997). doi:\n 10.1109\/CVPR.1997.609407","DOI":"10.1109\/CVPR.1997.609407"},{"key":"24_CR20","doi-asserted-by":"publisher","unstructured":"Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, 1995. Proceedings, vol. 4, pp. 1942\u20131948 (1995). doi:\n 10.1109\/ICNN.1995.488968","DOI":"10.1109\/ICNN.1995.488968"},{"issue":"4","key":"24_CR21","doi-asserted-by":"publisher","first-page":"341","DOI":"10.1023\/A:1008202821328","volume":"11","author":"R Storn","year":"1997","unstructured":"Storn, R., Price, K.: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341\u2013359 (1997). doi:\n 10.1023\/A:1008202821328","journal-title":"J. Glob. Optim."},{"key":"24_CR22","doi-asserted-by":"publisher","unstructured":"Janousek, J., Platos, J., Snasel, V.: Clustering using artificial bee colony on cuda. In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 3803\u20133807 (2014). doi:\n 10.1109\/SMC.2014.6974523","DOI":"10.1109\/SMC.2014.6974523"},{"key":"24_CR23","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1016\/j.advengsoft.2013.12.007","volume":"69","author":"S Mirjalili","year":"2014","unstructured":"Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46\u201361 (2014). doi:\n 10.1016\/j.advengsoft.2013.12.007","journal-title":"Adv. Eng. Softw."},{"issue":"2","key":"24_CR24","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1177\/003754970107600201","volume":"76","author":"ZW Geem","year":"2001","unstructured":"Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60\u201368 (2001)","journal-title":"Simulation"},{"key":"24_CR25","unstructured":"Lichman, M.: UCI machine learning repository (2015). \n http:\/\/archive.ics.uci.edu\/ml"},{"issue":"9","key":"24_CR26","doi-asserted-by":"publisher","first-page":"1090","DOI":"10.1093\/bioinformatics\/btg038","volume":"19","author":"S Dudoit","year":"2003","unstructured":"Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19(9), 1090\u20131099 (2003). doi:\n 10.1093\/bioinformatics\/btg038","journal-title":"Bioinformatics"},{"key":"24_CR27","unstructured":"Fred, A.L., Jain, A.K.: Data clustering using evidence accumulation. In: 16th International Conference on Pattern Recognition, 2002. Proceedings, vol. 4, pp. 276\u2013280. IEEE (2002)"},{"key":"24_CR28","unstructured":"Fern, X.Z., Brodley, C.E.: Random projection for high dimensional data clustering: a cluster ensemble approach. In: ICML, vol. 3, pp. 186\u2013193 (2003)"}],"container-title":["Advances in Intelligent Systems and Computing","Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-29504-6_24","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T07:58:09Z","timestamp":1559375889000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-29504-6_24"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016]]},"ISBN":["9783319295039","9783319295046"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-29504-6_24","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2016]]}}}