{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T22:50:14Z","timestamp":1725835814457},"publisher-location":"Cham","reference-count":32,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319261867"},{"type":"electronic","value":"9783319261874"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2015]]},"DOI":"10.1007\/978-3-319-26187-4_9","type":"book-chapter","created":{"date-parts":[[2015,10,26]],"date-time":"2015-10-26T13:05:24Z","timestamp":1445864724000},"page":"124-138","source":"Crossref","is-referenced-by-count":0,"title":["A Soft Subspace Clustering Method for Text Data Using a Probability Based Feature Weighting Scheme"],"prefix":"10.1007","author":[{"given":"Abdul","family":"Wahid","sequence":"first","affiliation":[]},{"given":"Xiaoying","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Peter","family":"Andreae","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,12,18]]},"reference":[{"key":"9_CR1","doi-asserted-by":"crossref","unstructured":"Aggarwal, C.C, Wolf, J.L., Yu, P.S., Procopiuc, C., Park, J.S.: Fast algorithms for projected clustering. In: ACM SIGMOD Record, vol. 28, pp. 61\u201372. ACM (1999)","DOI":"10.1145\/304181.304188"},{"key":"9_CR2","doi-asserted-by":"crossref","unstructured":"Aggarwal, C.C., Yu, P.S: Finding generalized projected clusters in high dimensional spaces, vol. 29. ACM (2000)","DOI":"10.1145\/335191.335383"},{"key":"9_CR3","doi-asserted-by":"crossref","unstructured":"Agrawal, R., Gehrke, J, Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications, vol. 27. ACM (1998)","DOI":"10.1145\/276305.276314"},{"key":"9_CR4","doi-asserted-by":"crossref","unstructured":"Bhattacharya, I., Getoor, L.: A latent dirichlet model for unsupervised entity resolution. In: SDM, vol. 5, p. 59. SIAM (2006)","DOI":"10.1137\/1.9781611972764.5"},{"key":"9_CR5","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1201\/9781420059458.ch4","volume":"10","author":"DM Blei","year":"2009","unstructured":"Blei, D.M., Lafferty, J.D.: Topic models. Text Min.: Classif., Clustering, Appl. 10, 71 (2009)","journal-title":"Text Min.: Classif., Clustering, Appl."},{"key":"9_CR6","first-page":"993","volume":"3","author":"DM Blei","year":"2003","unstructured":"Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993\u20131022 (2003)","journal-title":"J. Mach. Learn. Res."},{"issue":"5","key":"9_CR7","doi-asserted-by":"publisher","first-page":"943","DOI":"10.1016\/j.patcog.2003.11.003","volume":"37","author":"EY Chan","year":"2004","unstructured":"Chan, E.Y., Ching, W.K., Ng, M.K., Huang, J.Z.: An optimization algorithm for clustering using weighted dissimilarity measures. Pattern Recogn. 37(5), 943\u2013952 (2004)","journal-title":"Pattern Recogn."},{"issue":"4","key":"9_CR8","doi-asserted-by":"publisher","first-page":"932","DOI":"10.1109\/TKDE.2011.262","volume":"25","author":"X Chen","year":"2013","unstructured":"Chen, X., Xu, X., Huang, J.Z., Ye, Y.: Tw- $$(k) $$ -means: automated two-level variable weighting clustering algorithm for multiview data. IEEE Trans. Knowl. Data Eng. 25(4), 932\u2013944 (2013)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"1","key":"9_CR9","doi-asserted-by":"publisher","first-page":"434","DOI":"10.1016\/j.patcog.2011.06.004","volume":"45","author":"X Chen","year":"2012","unstructured":"Chen, X., Ye, Y., Xu, X., Huang, J.Z.: A feature group weighting method for subspace clustering of high-dimensional data. Pattern Recogn. 45(1), 434\u2013446 (2012)","journal-title":"Pattern Recogn."},{"key":"9_CR10","doi-asserted-by":"crossref","unstructured":"Cheng, C.-H., Fu, A.W., Zhang, Y.: Entropy-based subspace clustering for mining numerical data. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 84\u201393. ACM (1999)","DOI":"10.1145\/312129.312199"},{"issue":"2\u20133","key":"9_CR11","doi-asserted-by":"publisher","first-page":"169","DOI":"10.1007\/BF00227423","volume":"20","author":"G Soete De","year":"1986","unstructured":"De Soete, G.: Optimal variable weighting for ultrametric and additive tree clustering. Qual. Quant. 20(2\u20133), 169\u2013180 (1986)","journal-title":"Qual. Quant."},{"issue":"1","key":"9_CR12","doi-asserted-by":"publisher","first-page":"101","DOI":"10.1007\/BF01901677","volume":"5","author":"G Soete De","year":"1988","unstructured":"De Soete, G.: Ovwtre: a program for optimal variable weighting for ultrametric and additive tree fitting. J. Classif. 5(1), 101\u2013104 (1988)","journal-title":"J. Classif."},{"issue":"1","key":"9_CR13","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1007\/BF02294206","volume":"49","author":"WS DeSarbo","year":"1984","unstructured":"DeSarbo, W.S., Carroll, J.D., Clark, L.A., Green, P.E.: Synthesized clustering: a method for amalgamating alternative clustering bases with differential weighting of variables. Psychometrika 49(1), 57\u201378 (1984)","journal-title":"Psychometrika"},{"key":"9_CR14","doi-asserted-by":"crossref","unstructured":"Domeniconi, C., Papadopoulos, D., Gunopulos, D., Ma, S.: Subspace clustering of high dimensional data. In: SDM, vol. 73, p. 93. SIAM (2004)","DOI":"10.1137\/1.9781611972740.58"},{"issue":"4","key":"9_CR15","doi-asserted-by":"publisher","first-page":"815","DOI":"10.1111\/j.1467-9868.2004.02059.x","volume":"66","author":"JH Friedman","year":"2004","unstructured":"Friedman, J.H., Meulman, J.J.: Clustering objects on subsets of attributes (with discussion). J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 66(4), 815\u2013849 (2004)","journal-title":"J. R. Stat. Soc.: Ser. B (Stat. Methodol.)"},{"key":"9_CR16","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1007\/978-1-4757-4305-0_3","volume-title":"Survey of Text Mining","author":"H Frigui","year":"2004","unstructured":"Frigui, H., Nasraoui, O.: Simultaneous clustering and dynamic keyword weighting for text documents. In: Berry, M.W. (ed.) Survey of Text Mining, pp. 45\u201372. Springer, New York (2004)"},{"issue":"3","key":"9_CR17","doi-asserted-by":"publisher","first-page":"567","DOI":"10.1016\/j.patcog.2003.08.002","volume":"37","author":"H Frigui","year":"2004","unstructured":"Frigui, H., Nasraoui, O.: Unsupervised learning of prototypes and attribute weights. Pattern Recogn. 37(3), 567\u2013581 (2004)","journal-title":"Pattern Recogn."},{"key":"9_CR18","unstructured":"Goil, S., Nagesh, H., Choudhary, A.: Mafia: efficient and scalable subspace clustering for very large data sets. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 443\u2013452 (1999)"},{"issue":"8","key":"9_CR19","doi-asserted-by":"publisher","first-page":"1026","DOI":"10.1109\/TKDE.2007.1048","volume":"19","author":"L Jing","year":"2007","unstructured":"Jing, L., Ng, M.K., Huang, J.Z.: An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Trans. Knowl. Data Eng. 19(8), 1026\u20131041 (2007)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"9_CR20","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"802","DOI":"10.1007\/11430919_94","volume-title":"Advances in Knowledge Discovery and Data Mining","author":"L Jing","year":"2005","unstructured":"Jing, L., Ng, M.K., Xu, J., Huang, J.Z.: Subspace clustering of text documents with feature weighting K-means algorithm. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 802\u2013812. Springer, Heidelberg (2005)"},{"issue":"2","key":"9_CR21","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1007\/s00357-001-0018-x","volume":"18","author":"V Makarenkov","year":"2001","unstructured":"Makarenkov, V., Legendre, P.: Optimal variable weighting for ultrametric and additive trees and k-means partitioning: methods and software. J. Classif. 18(2), 245\u2013271 (2001)","journal-title":"J. Classif."},{"issue":"3","key":"9_CR22","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1023\/A:1024016609528","volume":"52","author":"DS Modha","year":"2003","unstructured":"Modha, D.S., Spangler, W.S.: Feature weighting in k-means clustering. Mach. Learn. 52(3), 217\u2013237 (2003)","journal-title":"Mach. Learn."},{"key":"9_CR23","doi-asserted-by":"crossref","unstructured":"Nguyen, N., Caruana, R.: Consensus clusterings. In: Seventh IEEE International Conference on Data Mining, ICDM 2007, pp. 607\u2013612. IEEE (2007)","DOI":"10.1109\/ICDM.2007.73"},{"issue":"7","key":"9_CR24","first-page":"424","volume":"427","author":"M Steyvers","year":"2007","unstructured":"Steyvers, M., Griffiths, T.: Probabilistic topic models. Handb. Latent Semant. Anal. 427(7), 424\u2013440 (2007)","journal-title":"Handb. Latent Semant. Anal."},{"key":"9_CR25","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1007\/978-3-642-41230-1_10","volume-title":"Web Information Systems Engineering \u2013 WISE 2013","author":"A Wahid","year":"2013","unstructured":"Wahid, A., Gao, X., Andreae, P.: Exploiting user queries for search result clustering. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013, Part I. LNCS, vol. 8180, pp. 111\u2013120. Springer, Heidelberg (2013)"},{"key":"9_CR26","doi-asserted-by":"crossref","unstructured":"Wahid, A., Gao, X., Andreae, P.: Multi-view clustering of web documents using multi-objective genetic algorithm. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2625\u20132632. IEEE (2014)","DOI":"10.1109\/CEC.2014.6900586"},{"key":"9_CR27","doi-asserted-by":"crossref","unstructured":"Wahid, A., Gao, X., Andreae, P.: Multi-objective multi-view clustering ensemble based on evolutionary approach. In: IEEE Congress on to Appear in Evolutionary Computation, CEC 2015. IEEE (2015)","DOI":"10.1109\/CEC.2015.7257091"},{"key":"9_CR28","doi-asserted-by":"publisher","first-page":"80","DOI":"10.2307\/3001968","volume":"1","author":"F Wilcoxon","year":"1945","unstructured":"Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1, 80\u201383 (1945)","journal-title":"Biom. Bull."},{"issue":"4","key":"9_CR29","doi-asserted-by":"publisher","first-page":"255","DOI":"10.1016\/j.infsof.2003.07.003","volume":"46","author":"K-G Woo","year":"2004","unstructured":"Woo, K.-G., Lee, J.-H., Kim, M.-H., Lee, Y.-J.: Findit: a fast and intelligent subspace clustering algorithm using dimension voting. Inf. Softw. Technol. 46(4), 255\u2013271 (2004)","journal-title":"Inf. Softw. Technol."},{"key":"9_CR30","unstructured":"Yang, J., Wang, W., Wang, H., Yu, P.: $$\\delta $$ -clusters: csubspace correlation in a large data set. In: Proceedings of the 18th International Conference on Data Engineering, pp. 517\u2013528. IEEE (2002)"},{"key":"9_CR31","doi-asserted-by":"crossref","unstructured":"Zhao, Y., Karypis, G.: Comparison of agglomerative and partitional document clustering algorithms. Technical report, DTIC Document (2002)","DOI":"10.21236\/ADA439503"},{"key":"9_CR32","unstructured":"Zhong, S., Ghosh, J.: A comparative study of generative models for document clustering. In: Proceedings of the Workshop on Clustering High Dimensional Data and Its Applications in SIAM Data Mining Conference (2003)"}],"container-title":["Lecture Notes in Computer Science","Web Information Systems Engineering \u2013 WISE 2015"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-26187-4_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,9,10]],"date-time":"2020-09-10T08:53:10Z","timestamp":1599727990000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-26187-4_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015]]},"ISBN":["9783319261867","9783319261874"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-26187-4_9","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2015]]}}}