{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T11:46:32Z","timestamp":1725795992950},"publisher-location":"Cham","reference-count":17,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319079943"},{"type":"electronic","value":"9783319079950"}],"license":[{"start":{"date-parts":[[2014,1,1]],"date-time":"2014-01-01T00:00:00Z","timestamp":1388534400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2014,1,1]],"date-time":"2014-01-01T00:00:00Z","timestamp":1388534400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2014]]},"DOI":"10.1007\/978-3-319-07995-0_12","type":"book-chapter","created":{"date-parts":[[2014,6,10]],"date-time":"2014-06-10T23:24:31Z","timestamp":1402442671000},"page":"115-124","source":"Crossref","is-referenced-by-count":2,"title":["Gaussian Process-Based Inferential Control System"],"prefix":"10.1007","author":[{"given":"Ali","family":"Abusnina","sequence":"first","affiliation":[]},{"given":"Daniel","family":"Kudenko","sequence":"additional","affiliation":[]},{"given":"Rolf","family":"Roth","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"issue":"2","key":"12_CR1","doi-asserted-by":"publisher","first-page":"262","DOI":"10.1016\/j.engappai.2009.11.003","volume":"23","author":"A. Bahar","year":"2010","unstructured":"Bahar, A., \u00d6zgen, C.: State estimation and inferential control for a reactive batch distillation column. Engineering Applications of Artificial Intelligence\u00a023(2), 262\u2013270 (2010)","journal-title":"Engineering Applications of Artificial Intelligence"},{"doi-asserted-by":"crossref","unstructured":"Corchado, E., Wo\u017aniak, M., Abraham, A., de Carvalho, A.C., Sn\u00e1\u0161el, V.: Recent trends in intelligent data analysis. Neurocomputing\u00a0126, 1\u20132 (2014)","key":"12_CR2","DOI":"10.1016\/j.neucom.2013.07.001"},{"doi-asserted-by":"crossref","unstructured":"Kadlec, P., Gabrys, B.: Adaptive local learning soft sensor for inferential control support. In: 2008 International Conference on Computational Intelligence for Modelling Control & Automation, pp. 243\u2013248. IEEE (2008)","key":"12_CR3","DOI":"10.1109\/CIMCA.2008.66"},{"doi-asserted-by":"crossref","unstructured":"Geethalakshmi, S., Pappa, N.: Artificial neural network based soft sensor for fermentation of recombinant pichia pastoris. In: 2010 International Conference on Advances in Computer Engineering (ACE), pp. 148\u2013152. IEEE (2010)","key":"12_CR4","DOI":"10.1109\/ACE.2010.56"},{"doi-asserted-by":"crossref","unstructured":"Souza, F., Santos, P., Arajo, R.: Variable and delay selection using neural networks and mutual information for data-driven soft sensors. In: 2010 IEEE Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1\u20138. IEEE (2010)","key":"12_CR5","DOI":"10.1109\/ETFA.2010.5641329"},{"unstructured":"Zhang, X., Huang, W., Zhu, Y., Chen, S.: A novel soft sensor modelling method based on kernel pls. In: 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), vol.\u00a01, pp. 295\u2013299. IEEE (2010)","key":"12_CR6"},{"issue":"1","key":"12_CR7","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1016\/j.chemolab.2010.11.004","volume":"105","author":"Z. Ge","year":"2011","unstructured":"Ge, Z., Gao, F., Song, Z.: Mixture probabilistic pcr model for soft sensing of multimode processes. Chemometrics and Intelligent Laboratory Systems\u00a0105(1), 91\u2013105 (2011)","journal-title":"Chemometrics and Intelligent Laboratory Systems"},{"doi-asserted-by":"crossref","unstructured":"Abusnina, A., Kudenko, D.: Adaptive soft sensor based on moving gaussian process window. In: IEEE International Conference on Industrial Technology (ICIT), pp. 1051\u20131056 (2013)","key":"12_CR8","DOI":"10.1109\/ICIT.2013.6505817"},{"key":"12_CR9","first-page":"715","volume-title":"Gaussian processes for machine learning","author":"C. Rasmussen","year":"2006","unstructured":"Rasmussen, C., Williams, C.: Gaussian processes for machine learning, vol.\u00a038, pp. 715\u2013719. The MIT Press, Cambridge (2006)"},{"unstructured":"Bernardo, J., Berger, J., Dawid, A., Smith, A., et al.: Regression and classification using gaussian process priors (1998)","key":"12_CR10"},{"issue":"1","key":"12_CR11","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1016\/j.isatra.2010.09.001","volume":"50","author":"S. Vijaya Raghavan","year":"2011","unstructured":"Vijaya Raghavan, S., Radhakrishnan, T., Srinivasan, K.: Soft sensor based composition estimation and controller design for an ideal reactive distillation column. ISA Transactions\u00a050(1), 61\u201370 (2011)","journal-title":"ISA Transactions"},{"doi-asserted-by":"crossref","unstructured":"Bahar, A., Giiner, E., Ozgen, C., Halici, U.: Design of state estimators for the inferential control of an industrial distillation column. In: International Joint Conference on Neural Networks, IJCNN 2006, pp. 1112\u20131115. IEEE (2006)","key":"12_CR12","DOI":"10.1109\/IJCNN.2006.246814"},{"issue":"12","key":"12_CR13","doi-asserted-by":"publisher","first-page":"2543","DOI":"10.1021\/ie00060a007","volume":"30","author":"T. Mejdell","year":"1991","unstructured":"Mejdell, T., Skogestad, S.: Estimation of distillation compositions from multiple temperature measurements using partial-least-squares regression. Industrial & Engineering Chemistry Research\u00a030(12), 2543\u20132555 (1991)","journal-title":"Industrial & Engineering Chemistry Research"},{"issue":"2","key":"12_CR14","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1016\/S0959-1524(99)00027-X","volume":"10","author":"M. Kano","year":"2000","unstructured":"Kano, M., Miyazaki, K., Hasebe, S., Hashimoto, I.: Inferential control system of distillation compositions using dynamic partial least squares regression. Journal of Process Control\u00a010(2), 157\u2013166 (2000)","journal-title":"Journal of Process Control"},{"unstructured":"Kocijan, J.: Control algorithms based on gaussian process models: A state-of-the-art survey. In: Special International Conference on Complex Systems: Synergy of Control, Communications and Computing, vol.\u00a016, pp. 273\u2013280 (2011)","key":"12_CR15"},{"unstructured":"\u00c5str\u00f6m, K.J.: Control system design lecture notes for me 155a. Department of Mechanical and Environmental Engineering University of California Santa Barbara (2002)","key":"12_CR16"},{"issue":"6062","key":"12_CR17","doi-asserted-by":"publisher","first-page":"1518","DOI":"10.1126\/science.1205438","volume":"334","author":"D. Reshef","year":"2011","unstructured":"Reshef, D., Reshef, Y., Finucane, H., Grossman, S., McVean, G., Turnbaugh, P., Lander, E., Mitzenmacher, M., Sabeti, P.: Detecting novel associations in large data sets. Science\u00a0334(6062), 1518\u20131524 (2011)","journal-title":"Science"}],"container-title":["Advances in Intelligent Systems and Computing","International Joint Conference SOCO\u201914-CISIS\u201914-ICEUTE\u201914"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-07995-0_12","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,21]],"date-time":"2023-01-21T00:54:53Z","timestamp":1674262493000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-07995-0_12"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014]]},"ISBN":["9783319079943","9783319079950"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-07995-0_12","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2014]]}}}