{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T11:21:40Z","timestamp":1725794500954},"publisher-location":"Cham","reference-count":17,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319076164"},{"type":"electronic","value":"9783319076171"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2014]]},"DOI":"10.1007\/978-3-319-07617-1_44","type":"book-chapter","created":{"date-parts":[[2014,5,21]],"date-time":"2014-05-21T05:30:06Z","timestamp":1400650206000},"page":"502-514","source":"Crossref","is-referenced-by-count":3,"title":["Hybrid Approaches of Support Vector Regression and SARIMA Models to Forecast the Inspections Volume"],"prefix":"10.1007","author":[{"given":"Juan J.","family":"Ruiz-Aguilar","sequence":"first","affiliation":[]},{"given":"Ignacio J.","family":"Turias","sequence":"additional","affiliation":[]},{"given":"Mar\u00eda J.","family":"Jim\u00e9nez-Come","sequence":"additional","affiliation":[]},{"given":"M. Mar","family":"Cerb\u00e1n","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"issue":"11","key":"44_CR1","doi-asserted-by":"publisher","first-page":"3489","DOI":"10.1016\/j.cor.2007.01.026","volume":"35","author":"A. Alenezi","year":"2008","unstructured":"Alenezi, A., Moses, S.A., Trafalis, T.B.: Real-Time Prediction of Order Flowtimes Using Support Vector Regression. Comput. Oper. Res.\u00a035(11), 3489\u20133503 (2008)","journal-title":"Comput. Oper. Res."},{"issue":"04","key":"44_CR2","doi-asserted-by":"publisher","first-page":"277","DOI":"10.1142\/S0129065711002833","volume":"21","author":"M.L. Borrajo","year":"2011","unstructured":"Borrajo, M.L., Baruque, B., Corchado, E., Bajo, J., Corchado, J.M.: Hybrid Neural Intelligent System to Predict Business Failure in Small-to-Medium-Size Enterprises. Int. J. Neural Syst.\u00a021(04), 277\u2013296 (2011)","journal-title":"Int. J. Neural Syst."},{"key":"44_CR3","volume-title":"Time Series Analysis: Forecasting and Control","author":"G.E.P. Box","year":"1976","unstructured":"Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day, Oakland (1976)"},{"issue":"1","key":"44_CR4","doi-asserted-by":"publisher","first-page":"254","DOI":"10.1016\/j.eswa.2005.11.027","volume":"32","author":"K. Chen","year":"2007","unstructured":"Chen, K., Wang, C.: A Hybrid SARIMA and Support Vector Machines in Forecasting the Production Values of the Machinery Industry in Taiwan. Expert Syst. Appl.\u00a032(1), 254\u2013264 (2007)","journal-title":"Expert Syst. Appl."},{"issue":"1","key":"44_CR5","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1016\/S0169-2070(96)00697-8","volume":"13","author":"M.S. Dougherty","year":"1997","unstructured":"Dougherty, M.S., Cobbett, M.R.: Short-Term Inter-Urban Traffic Forecasts using Neural Networks. Int. J. Forecast.\u00a013(1), 21\u201331 (1997)","journal-title":"Int. J. Forecast."},{"issue":"5","key":"44_CR6","doi-asserted-by":"publisher","first-page":"359","DOI":"10.1016\/0893-6080(89)90020-8","volume":"2","author":"K. Hornik","year":"1989","unstructured":"Hornik, K., Stinchcombe, M., White, H.: Multilayer Feedforward Networks are Universal Approximators. Neural Networks\u00a02(5), 359\u2013366 (1989)","journal-title":"Neural Networks"},{"key":"44_CR7","unstructured":"Mak, K., Yang, D.: Forecasting Hong Kong\u2019s Container Throughput with Approximate Least Squares Support Vector Machines. In: Proceedings of the World Congress on Engineering. Citeseer (2007)"},{"key":"44_CR8","volume-title":"Statistical learning theory","author":"V.N. Vapnik","year":"1998","unstructured":"Vapnik, V.N.: Statistical learning theory. John Wiley and Sons, New York (1998)"},{"issue":"6","key":"44_CR9","doi-asserted-by":"publisher","first-page":"758","DOI":"10.1016\/j.omega.2011.07.008","volume":"40","author":"J. Wang","year":"2012","unstructured":"Wang, J., Wang, J., Zhang, Z., Guo, S.: Stock Index Forecasting Based on a Hybrid Model. Omega\u00a040(6), 758\u2013766 (2012)","journal-title":"Omega"},{"key":"44_CR10","doi-asserted-by":"publisher","first-page":"219","DOI":"10.1016\/j.trc.2012.08.004","volume":"27","author":"J. Wang","year":"2013","unstructured":"Wang, J., Shi, Q.: Short-Term Traffic Speed Forecasting Hybrid Model Based on Chaos\u2013Wavelet Analysis-Support Vector Machine Theory. Transportation Research Part C: Emerging Technologies\u00a027, 219\u2013232 (2013)","journal-title":"Transportation Research Part C: Emerging Technologies"},{"issue":"2","key":"44_CR11","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1080\/02723646.1981.10642213","volume":"2","author":"C.J. Willmott","year":"1981","unstructured":"Willmott, C.J.: On the Validation of Models. Physical Geography\u00a02(2), 184\u2013194 (1981)","journal-title":"Physical Geography"},{"key":"44_CR12","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/j.inffus.2013.04.006","volume":"16","author":"M. Wo\u017aniak","year":"2014","unstructured":"Wo\u017aniak, M., Gra\u00f1a, M., Corchado, E.: A Survey of Multiple Classifier Systems as Hybrid Systems. Information Fusion\u00a016, 3\u201317 (2014)","journal-title":"Information Fusion"},{"issue":"4","key":"44_CR13","doi-asserted-by":"publisher","first-page":"276","DOI":"10.1109\/TITS.2004.837813","volume":"5","author":"C. Wu","year":"2004","unstructured":"Wu, C., Ho, J., Lee, D.: Travel-Time Prediction with Support Vector Regression. IEEE Transactions on Intelligent Transportation System\u00a05(4), 276\u2013281 (2004)","journal-title":"IEEE Transactions on Intelligent Transportation System"},{"issue":"5","key":"44_CR14","doi-asserted-by":"publisher","first-page":"2232","DOI":"10.1016\/j.asoc.2013.02.002","volume":"13","author":"G. Xie","year":"2013","unstructured":"Xie, G., Wang, S., Zhao, Y., Lai, K.K.: Hybrid Approaches Based on LSSVR Model for Container Throughput Forecasting: A Comparative Study. Applied Soft Computing\u00a013(5), 2232\u20132241 (2013)","journal-title":"Applied Soft Computing"},{"key":"44_CR15","doi-asserted-by":"publisher","first-page":"159","DOI":"10.1016\/S0925-2312(01)00702-0","volume":"50","author":"G.P. Zhang","year":"2003","unstructured":"Zhang, G.P.: Time Series Forecasting using a Hybrid ARIMA and Neural Network Model. Neurocomputing\u00a050, 159\u2013175 (2003)","journal-title":"Neurocomputing"},{"issue":"1","key":"44_CR16","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1016\/S0169-2070(97)00044-7","volume":"14","author":"G. Zhang","year":"1998","unstructured":"Zhang, G., Eddy Patuwo, B., Hu, M.Y.: Forecasting with Artificial Neural Networks: The State of the Art. Int. J. Forecast.\u00a014(1), 35\u201362 (1998)","journal-title":"Int. J. Forecast."},{"issue":"3","key":"44_CR17","doi-asserted-by":"publisher","first-page":"517","DOI":"10.1016\/j.omega.2012.06.005","volume":"41","author":"B. Zhu","year":"2012","unstructured":"Zhu, B., Wei, Y.: Carbon Price Forecasting with a Novel Hybrid ARIMA and Least Squares Support Vector Machines Methodology. Omega\u00a041(3), 517\u2013524 (2012)","journal-title":"Omega"}],"container-title":["Lecture Notes in Computer Science","Hybrid Artificial Intelligence Systems"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-07617-1_44","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,5,26]],"date-time":"2019-05-26T18:05:07Z","timestamp":1558893907000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-07617-1_44"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014]]},"ISBN":["9783319076164","9783319076171"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-07617-1_44","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2014]]}}}