{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,8]],"date-time":"2024-12-08T05:06:33Z","timestamp":1733634393675,"version":"3.30.1"},"publisher-location":"Cham","reference-count":22,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031787607","type":"print"},{"value":"9783031787614","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,12,6]],"date-time":"2024-12-06T00:00:00Z","timestamp":1733443200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,6]],"date-time":"2024-12-06T00:00:00Z","timestamp":1733443200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,6]],"date-time":"2024-12-06T00:00:00Z","timestamp":1733443200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,6]],"date-time":"2024-12-06T00:00:00Z","timestamp":1733443200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-78761-4_7","type":"book-chapter","created":{"date-parts":[[2024,12,7]],"date-time":"2024-12-07T07:43:33Z","timestamp":1733557413000},"page":"68-77","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["SOE: SO(3)-Equivariant 3D MRI Encoding"],"prefix":"10.1007","author":[{"given":"Shizhe","family":"He","sequence":"first","affiliation":[]},{"given":"Magdalini","family":"Paschali","sequence":"additional","affiliation":[]},{"given":"Jiahong","family":"Ouyang","sequence":"additional","affiliation":[]},{"given":"Adnan","family":"Masood","sequence":"additional","affiliation":[]},{"given":"Akshay","family":"Chaudhari","sequence":"additional","affiliation":[]},{"given":"Ehsan","family":"Adeli","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,12,6]]},"reference":[{"issue":"6","key":"7_CR1","doi-asserted-by":"publisher","first-page":"895","DOI":"10.15288\/jsad.2015.76.895","volume":"76","author":"SA Brown","year":"2015","unstructured":"Brown, S.A., et al.: The national consortium on alcohol and neurodevelopment in adolescence (NCANDA): a multisite study of adolescent development and substance use. J. Stud. Alcohol Drugs 76(6), 895\u2013908 (2015)","journal-title":"J. Stud. Alcohol Drugs"},{"key":"7_CR2","unstructured":"Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations (2020)"},{"key":"7_CR3","doi-asserted-by":"crossref","unstructured":"Deng, C., Litany, O., Duan, Y., Poulenard, A., Tagliasacchi, A., Guibas, L.: Vector neurons: a general framework for so(3)-equivariant networks. arXiv preprint arXiv:2104.12229 (2021)","DOI":"10.1109\/ICCV48922.2021.01198"},{"key":"7_CR4","unstructured":"Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. CoRR abs\/2010.11929 (2020). https:\/\/arxiv.org\/abs\/2010.11929"},{"key":"7_CR5","doi-asserted-by":"publisher","first-page":"80","DOI":"10.1016\/j.mri.2020.03.008","volume":"71","author":"EE Esfahani","year":"2020","unstructured":"Esfahani, E.E., Hosseini, A.: Compressed MRI reconstruction exploiting a rotation-invariant total variation discretization. Magn. Reson. Imaging 71, 80\u201392 (2020)","journal-title":"Magn. Reson. Imaging"},{"key":"7_CR6","doi-asserted-by":"crossref","unstructured":"Esteves, C., Allen-Blanchette, C., Makadia, A., Daniilidis, K.: Learning so(3) equivariant representations with spherical CNNs. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)","DOI":"10.1007\/978-3-030-01261-8_4"},{"key":"7_CR7","unstructured":"Grill, J.B., et al.: Bootstrap your own latent: a new approach to self-supervised learning (2020)"},{"key":"7_CR8","doi-asserted-by":"crossref","unstructured":"He, K., Chen, X., Xie, S., Li, Y., Doll\u00e1r, P., Girshick, R.: Masked autoencoders are scalable vision learners (2021)","DOI":"10.1109\/CVPR52688.2022.01553"},{"key":"7_CR9","unstructured":"He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. CoRR abs\/1911.05722 (2019). http:\/\/arxiv.org\/abs\/1911.05722"},{"issue":"1","key":"7_CR10","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1038\/s41746-023-00811-0","volume":"6","author":"SC Huang","year":"2023","unstructured":"Huang, S.C., Pareek, A., Jensen, M., Lungren, M.P., Yeung, S., Chaudhari, A.S.: Self-supervised learning for medical image classification: a systematic review and implementation guidelines. NPJ Digit. Med. 6(1), 74 (2023)","journal-title":"NPJ Digit. Med."},{"key":"7_CR11","unstructured":"Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial examples are not bugs, they are features (2019)"},{"key":"7_CR12","unstructured":"Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2022)"},{"key":"7_CR13","unstructured":"Kwon, S., Choi, J.Y., Ryu, E.K.: Rotation and translation invariant representation learning with implicit neural representations. arXiv preprint arXiv:2304.13995 (2023)"},{"key":"7_CR14","doi-asserted-by":"crossref","unstructured":"Lang, D.M., Schwartz, E., Bercea, C.I., Giryes, R., Schnabel, J.A.: 3D masked autoencoders with application to anomaly detection in non-contrast enhanced breast MRI. arXiv preprint arXiv:2303.05861 (2023)","DOI":"10.1007\/978-3-031-45350-2_5"},{"key":"7_CR15","unstructured":"Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. CoRR abs\/2103.14030 (2021). https:\/\/arxiv.org\/abs\/2103.14030"},{"key":"7_CR16","doi-asserted-by":"publisher","unstructured":"Mueller, S.G., et al.: The Alzheimer\u2019s disease neuroimaging initiative. Neuroimaging Clin. N. Am. 15(4), 869\u2013877 (2005). https:\/\/doi.org\/10.1016\/j.nic.2005.09.008, https:\/\/www.sciencedirect.com\/science\/article\/pii\/S1052514905001024, alzheimer\u2019s Disease: 100 Years of Progress","DOI":"10.1016\/j.nic.2005.09.008"},{"key":"7_CR17","unstructured":"van\u00a0den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding (2019)"},{"key":"7_CR18","doi-asserted-by":"publisher","unstructured":"Ouyang, J., Zhao, Q., Adeli, E., Zaharchuk, G., Pohl, K.M.: Self-supervised learning of neighborhood embedding for longitudinal mri. Med. Image Anal. 82, 102571 (2022). https:\/\/doi.org\/10.1016\/j.media.2022.102571, https:\/\/www.sciencedirect.com\/science\/article\/pii\/S1361841522002122","DOI":"10.1016\/j.media.2022.102571"},{"key":"7_CR19","unstructured":"Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024\u20138035. Curran Associates, Inc. (2019). http:\/\/papers.neurips.cc\/paper\/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf"},{"key":"7_CR20","unstructured":"Pohl, K.M., et al.: The NCANDA_PUBLIC_6Y_REDCAP_V01 data release of the national consortium on alcohol and neurodevelopment in adolescence (NCANDA) (2021). https:\/\/dx.doi.org\/10.7303\/syn25606546"},{"key":"7_CR21","unstructured":"Sriram, A., Gaidon, A., Wu, J., Niebles, J.C., Fei-Fei, L., Adeli, E.: Home: homography-equivariant video representation learning (2023)"},{"key":"7_CR22","doi-asserted-by":"publisher","unstructured":"Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant CNNs. In: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 849\u2013858 (2018). https:\/\/doi.org\/10.1109\/CVPR.2018.00095","DOI":"10.1109\/CVPR.2018.00095"}],"container-title":["Lecture Notes in Computer Science","Machine Learning in Clinical Neuroimaging"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-78761-4_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,12,7]],"date-time":"2024-12-07T08:06:03Z","timestamp":1733558763000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-78761-4_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12,6]]},"ISBN":["9783031787607","9783031787614"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-78761-4_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,12,6]]},"assertion":[{"value":"6 December 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MLCN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Machine Learning in Clinical Neuroimaging","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Marrakesh","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Morocco","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mlcn2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/mlcnworkshop.github.io\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}