{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,5]],"date-time":"2024-12-05T05:27:51Z","timestamp":1733376471512,"version":"3.30.1"},"publisher-location":"Cham","reference-count":38,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031783883","type":"print"},{"value":"9783031783890","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,12,5]],"date-time":"2024-12-05T00:00:00Z","timestamp":1733356800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,5]],"date-time":"2024-12-05T00:00:00Z","timestamp":1733356800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,5]],"date-time":"2024-12-05T00:00:00Z","timestamp":1733356800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,5]],"date-time":"2024-12-05T00:00:00Z","timestamp":1733356800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-78389-0_11","type":"book-chapter","created":{"date-parts":[[2024,12,4]],"date-time":"2024-12-04T14:19:53Z","timestamp":1733321993000},"page":"154-169","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["SANGAM: Synergizing Local and Global Analysis for Simultaneous WBC Classification and Segmentation"],"prefix":"10.1007","author":[{"given":"Adit","family":"Srivastava","sequence":"first","affiliation":[]},{"given":"Aravind","family":"Ramagiri","sequence":"additional","affiliation":[]},{"given":"Puneet","family":"Gupta","sequence":"additional","affiliation":[]},{"given":"Vivek","family":"Gupta","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,12,5]]},"reference":[{"key":"11_CR1","doi-asserted-by":"crossref","unstructured":"Jamal Ferdosi Bilkis. \u201cUnified Approach for White Blood Cell Segmentation, Feature Extraction, and Counting using Max-Tree Data Structure\u201d. In: International Journal of Advanced Computer Science and Applications 11.9 (2020)","DOI":"10.14569\/IJACSA.2020.0110979"},{"key":"11_CR2","doi-asserted-by":"crossref","unstructured":"Emine Cengil, Ahmet \u00c7\u0131nar, and Muhammed Y\u0131ld\u0131r\u0131m. \u201cA hybrid approach for efficient multi-classification of white blood cells based on transfer learning techniques and traditional machine learning methods\u201d. In: Concurrency and Computation: Practice and Experience 34.6 (2022), e6756","DOI":"10.1002\/cpe.6756"},{"key":"11_CR3","doi-asserted-by":"crossref","unstructured":"Hua Chen et al. \u201cAccurate classification of white blood cells by coupling pretrained ResNet and DenseNet with SCAM mechanism\u201d. In: BMC bioinformatics 23.1 (2022), p. 282","DOI":"10.1186\/s12859-022-04824-6"},{"key":"11_CR4","doi-asserted-by":"crossref","unstructured":"Jose Luis Diaz Resendiz et al. \u201cExplainable CAD System for Classification of Acute Lymphoblastic Leukemia Based on a Robust White Blood Cell Segmentation\u201d. In: Cancers 15.13 (2023), p. 3376","DOI":"10.3390\/cancers15133376"},{"key":"11_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TGRS.2023.3328922","volume":"61","author":"A Dixit","year":"2023","unstructured":"Dixit, A., et al.: UNFOLD: 3D U-Net, 3D CNN and 3D Transformer based Hyperspectral Image Denoising. IEEE Trans. Geosci. Remote Sens. 61, 1\u201310 (2023)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"11_CR6","doi-asserted-by":"crossref","unstructured":"Adnan Haider et al. \u201cDeep features aggregation-based joint segmentation of cytoplasm and nuclei in white blood cells\u201d. In: IEEE Journal of Biomedical and Health Informatics 26.8 (2022), pp. 3685\u20133696","DOI":"10.1109\/JBHI.2022.3178765"},{"key":"11_CR7","unstructured":"Kaiming He et al. \u201cDeep residual learning for image recognition\u201d. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770\u2013778"},{"key":"11_CR8","unstructured":"Kaiming He et al. \u201cMask r-cnn\u201d. In: Proceedings of the IEEE international conference on computer vision. 2017, pp. 2961\u20132969"},{"key":"11_CR9","doi-asserted-by":"crossref","unstructured":"Lei Jiang, Chang Tang, and Hua Zhou. \u201cWhite blood cell classification via a discriminative region detection assisted feature aggregation network\u201d. In: Biomedical Optics Express 13.10 (2022), pp. 5246\u20135260","DOI":"10.1364\/BOE.462905"},{"key":"11_CR10","doi-asserted-by":"crossref","unstructured":"Siraj Khan et al. \u201cEfficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network\u201d. In: Computers in Biology and Medicine (2024), p. 108146","DOI":"10.1016\/j.compbiomed.2024.108146"},{"key":"11_CR11","doi-asserted-by":"crossref","unstructured":"Bing Leng et al. \u201cDeep learning detection network for peripheral blood leukocytes based on improved detection transformer\u201d. In: Biomedical Signal Processing and Control 82 (2023), p. 104518","DOI":"10.1016\/j.bspc.2022.104518"},{"key":"11_CR12","doi-asserted-by":"crossref","unstructured":"Ze Liu et al. \u201cSwin transformer: Hierarchical vision transformer using shifted windows\u201d. In: Proceedings of the IEEE\/CVF international conference on computer vision. 2021, pp. 10012\u201310022","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"11_CR13","unstructured":"Ilya Loshchilov and Frank Hutter. \u201cDecoupled weight decay regularization\u201d. In: arXiv preprint arXiv:1711.05101 (2017)"},{"key":"11_CR14","doi-asserted-by":"crossref","unstructured":"Mimosette Makem et al. \u201cA robust algorithm for white blood cell nuclei segmentation\u201d. In: Multimedia Tools and Applications 81.13 (2022), pp. 17849\u201317874","DOI":"10.1007\/s11042-022-12285-5"},{"key":"11_CR15","doi-asserted-by":"crossref","unstructured":"A Meenakshi et al. \u201cAutomatic classification of white blood cells using deep features based convolutional neural network\u201d. In: Multimedia Tools and Applications 81.21 (2022), pp. 30121\u201330142","DOI":"10.1007\/s11042-022-12539-2"},{"key":"11_CR16","unstructured":"Zahra Mousavi Kouzehkanan, Sajad Tavakoli, and Arezoo Alipanah. \u201cEasy-GT: Open-Source Software to Facilitate Making the Ground Truth for White Blood Cells Nucleus\u201d. In: arXiv e-prints (2021), arXiv-2101"},{"key":"11_CR17","unstructured":"Ozan Oktay et al. \u201cAttention u-net: Learning where to look for the pancreas\u201d. In: arXiv preprint arXiv:1804.03999 (2018)"},{"key":"11_CR18","doi-asserted-by":"crossref","unstructured":"\u015eeyma Nur \u00d6zcan, Tansel Uyar, and G\u00f6kay Karaye\u011fen. \u201cComprehensive data analysis of white blood cells with classification and segmentation by using deep learning approaches\u201d. In: Cytometry Part A (2024)","DOI":"10.2139\/ssrn.4604383"},{"key":"11_CR19","doi-asserted-by":"crossref","unstructured":"Jimut Bahan Pal et al. \u201cAdvancing instance segmentation and WBC classification in peripheral blood smear through domain adaptation: A study on PBC and the novel RV-PBS datasets\u201d. In: Expert Systems with Applications 249 (2024), p. 123660","DOI":"10.1016\/j.eswa.2024.123660"},{"key":"11_CR20","first-page":"12116","volume":"34","author":"M Raghu","year":"2021","unstructured":"Raghu, M., et al.: Do vision transformers see like convolutional neural networks? Adv. Neural. Inf. Process. Syst. 34, 12116\u201312128 (2021)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"11_CR21","doi-asserted-by":"crossref","unstructured":"Bairaboina Sai Sambasiva Rao and Battula Srinivasa Rao: An effective WBC segmentation and classification using MobilenetV3\u2013ShufflenetV2 based deep learning framework. IEEE Access 11, 27739\u201327748 (2023)","DOI":"10.1109\/ACCESS.2023.3259100"},{"key":"11_CR22","doi-asserted-by":"crossref","unstructured":"S Ratheesh and A Ajisha Breethi. \u201cDeep learning based Non-Local k-best renyi entropy for classification of white blood cell subtypes\u201d. In: Biomedical Signal Processing and Control 90 (2024), p. 105812","DOI":"10.1016\/j.bspc.2023.105812"},{"key":"11_CR23","doi-asserted-by":"crossref","unstructured":"M Roy Reena and PM Ameer. \u201cLocalization and recognition of leukocytes in peripheral blood: A deep learning approach\u201d. In: Computers in Biology and Medicine 126 (2020), p. 104034","DOI":"10.1016\/j.compbiomed.2020.104034"},{"key":"11_CR24","doi-asserted-by":"crossref","unstructured":"Rufus Rubin et al. \u201cTransforming Healthcare: Raabin White Blood Cell Classification with Deep Vision Transformer\u201d. In: 2023 6th International Conference on Signal Processing and Information Security (ICSPIS). IEEE. 2023, pp. 212\u2013217","DOI":"10.1109\/ICSPIS60075.2023.10344258"},{"key":"11_CR25","unstructured":"Saba Saleem et al. \u201cA deep network designed for segmentation and classification of leukemia using fusion of the transfer learning models\u201d. In: Complex & Intelligent Systems (2021), pp. 1\u201316"},{"key":"11_CR26","doi-asserted-by":"crossref","unstructured":"S Sapna and A Renuka. \u201cComputer-aided system for Leukocyte nucleus segmentation and Leukocyte classification based on nucleus characteristics\u201d. In: International Journal of Computers and Applications 42.6 (2020), pp. 622\u2013633","DOI":"10.1080\/1206212X.2020.1726013"},{"key":"11_CR27","doi-asserted-by":"crossref","unstructured":"Sneha Shukla, Anup Kumar Gupta, and Puneet Gupta. \u201cExploring the feasibility of adversarial attacks on medical image segmentation\u201d. In: Multimedia Tools and Applications 83.4 (2024), pp. 11745\u201311768","DOI":"10.1007\/s11042-023-15575-8"},{"key":"11_CR28","doi-asserted-by":"crossref","unstructured":"Sajad Tavakoli et al. \u201cNew segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images\u201d. In: Scientific Reports 11.1 (2021), p. 19428","DOI":"10.1038\/s41598-021-98599-0"},{"key":"11_CR29","unstructured":"Yi Tay et al. \u201cLong range arena: A benchmark for efficient transformers\u201d. In: arXiv preprint arXiv:2011.04006 (2020)"},{"key":"11_CR30","doi-asserted-by":"crossref","unstructured":"H\u00fcseyin \u00dczen and H\u00fcseyin Firat. \u201cA hybrid approach based on multipath Swin transformer and ConvMixer for white blood cells classification\u201d. In: Health Information Science and Systems 12.1 (2024), p. 33","DOI":"10.1007\/s13755-024-00291-w"},{"key":"11_CR31","doi-asserted-by":"crossref","unstructured":"Wenhai Wang et al. \u201cPvt v2: Improved baselines with pyramid vision transformer\u201d. In: Computational Visual Media 8.3 (2022), pp. 415\u2013424","DOI":"10.1007\/s41095-022-0274-8"},{"key":"11_CR32","doi-asserted-by":"crossref","unstructured":"Jiangping Wu et al. \u201cWBC image segmentation based on residual networks and attentional mechanisms\u201d. In: Computational Intelligence and Neuroscience 2022 (2022)","DOI":"10.1155\/2022\/1610658"},{"key":"11_CR33","doi-asserted-by":"crossref","unstructured":"Dongxu Yang et al. \u201cLeukocyte subtypes identification using bilinear self-attention convolutional neural network\u201d. In: Measurement 173 (2021), p. 108643","DOI":"10.1016\/j.measurement.2020.108643"},{"key":"11_CR34","doi-asserted-by":"crossref","unstructured":"Qiang Zhai et al. \u201cAutomatic white blood cell classification based on whole-slide images with a deeply aggregated neural network\u201d. In: Journal of Medical and Biological Engineering 42.1 (2022), pp. 126\u2013137","DOI":"10.1007\/s40846-022-00683-x"},{"key":"11_CR35","doi-asserted-by":"publisher","first-page":"65598","DOI":"10.1109\/ACCESS.2022.3182800","volume":"10","author":"M Zhao","year":"2022","unstructured":"Zhao, M., et al.: MSS-WISN: Multiscale multistaining WBCs instance segmentation network. IEEE Access 10, 65598\u201365610 (2022)","journal-title":"IEEE Access"},{"key":"11_CR36","doi-asserted-by":"crossref","unstructured":"Sixiao Zheng et al. \u201cRethinking semantic segmentation from a sequence-tosequence perspective with transformers\u201d. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. 2021, pp. 6881\u20136890","DOI":"10.1109\/CVPR46437.2021.00681"},{"key":"11_CR37","doi-asserted-by":"crossref","unstructured":"Xin Zheng et al. \u201cWhite blood cell detection using saliency detection and CenterNet: A two-stage approach\u201d. In: Journal of Biophotonics 16.3 (2023), e202200174","DOI":"10.1002\/jbio.202200174"},{"key":"11_CR38","doi-asserted-by":"crossref","unstructured":"Zongwei Zhou et al. \u201cUnet++: A nested u-net architecture for medical image segmentation\u201d. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4. Springer. 2018, pp. 3\u201311","DOI":"10.1007\/978-3-030-00889-5_1"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-78389-0_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,12,4]],"date-time":"2024-12-04T15:06:14Z","timestamp":1733324774000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-78389-0_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12,5]]},"ISBN":["9783031783883","9783031783890"],"references-count":38,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-78389-0_11","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,12,5]]},"assertion":[{"value":"5 December 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICPR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Pattern Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Kolkata","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"India","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 December 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 December 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icpr2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/icpr2024.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}