{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T16:40:21Z","timestamp":1733071221066,"version":"3.30.0"},"publisher-location":"Cham","reference-count":34,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031782008"},{"type":"electronic","value":"9783031782015"}],"license":[{"start":{"date-parts":[[2024,12,2]],"date-time":"2024-12-02T00:00:00Z","timestamp":1733097600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,2]],"date-time":"2024-12-02T00:00:00Z","timestamp":1733097600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,2]],"date-time":"2024-12-02T00:00:00Z","timestamp":1733097600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,2]],"date-time":"2024-12-02T00:00:00Z","timestamp":1733097600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-78201-5_5","type":"book-chapter","created":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T15:08:52Z","timestamp":1733065732000},"page":"64-79","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Colon Segmentation Using Guided Sequential Episodic Training and\u00a0Contrastive Learning"],"prefix":"10.1007","author":[{"given":"Samir","family":"Harb","sequence":"first","affiliation":[]},{"given":"Asem","family":"Ali","sequence":"additional","affiliation":[]},{"given":"Mohamed","family":"Yousuf","sequence":"additional","affiliation":[]},{"given":"Salwa","family":"Elshazly","sequence":"additional","affiliation":[]},{"given":"Aly","family":"Farag","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,12,2]]},"reference":[{"key":"5_CR1","doi-asserted-by":"publisher","unstructured":"Multi-atlas labeling beyond the cranial vault - workshop and challenge. https:\/\/doi.org\/10.7303\/syn3193805. Accessed 3 Apr 2024","DOI":"10.7303\/syn3193805"},{"key":"5_CR2","doi-asserted-by":"crossref","unstructured":"Akilandeswari, A., et al.: Automatic detection and segmentation of colorectal cancer with deep residual convolutional neural network. Evid.-Based Complement. Altern. Med. (2022)","DOI":"10.1155\/2022\/3415603"},{"issue":"24","key":"5_CR3","doi-asserted-by":"publisher","first-page":"9761","DOI":"10.3390\/s22249761","volume":"22","author":"I Alkabbany","year":"2022","unstructured":"Alkabbany, I., Ali, A.M., Mohamed, M., Elshazly, S.M., Farag, A.: An AI-based colonic polyp classifier for colorectal cancer screening using low-dose abdominal CT. Sensors 22(24), 9761 (2022)","journal-title":"Sensors"},{"key":"5_CR4","doi-asserted-by":"crossref","unstructured":"Arbelle, A., Raviv, T.R.: Microscopy cell segmentation via convolutional LSTM networks. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1008\u20131012. IEEE (2019)","DOI":"10.1109\/ISBI.2019.8759447"},{"key":"5_CR5","doi-asserted-by":"publisher","first-page":"181","DOI":"10.1016\/j.media.2019.04.014","volume":"55","author":"SP Awate","year":"2019","unstructured":"Awate, S.P., Garg, S., Jena, R.: Estimating uncertainty in MRF-based image segmentation: a perfect-MCMC approach. Med. Image Anal. 55, 181\u2013196 (2019)","journal-title":"Med. Image Anal."},{"issue":"4","key":"5_CR6","doi-asserted-by":"publisher","first-page":"325","DOI":"10.1016\/j.compmedimag.2009.02.004","volume":"33","author":"A Bert","year":"2009","unstructured":"Bert, A., et al.: An automatic method for colon segmentation in CT colonography. Comput. Med. Imaging Graph. 33(4), 325\u2013331 (2009)","journal-title":"Comput. Med. Imaging Graph."},{"key":"5_CR7","doi-asserted-by":"crossref","unstructured":"Chen, D., Fahmi, R., Farag, A.A., Falk, R.L., Dryden, G.W.: Accurate and fast 3D colon segmentation in CT colonography. In: ISBI (2009)","DOI":"10.1109\/ISBI.2009.5193091"},{"key":"5_CR8","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1023\/B:VISI.0000022288.19776.77","volume":"59","author":"PF Felzenszwalb","year":"2004","unstructured":"Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59, 167\u2013181 (2004)","journal-title":"Int. J. Comput. Vision"},{"key":"5_CR9","doi-asserted-by":"crossref","unstructured":"Gayathri\u00a0Devi, K., Radhakrishnan, R., et\u00a0al.: Automatic segmentation of colon in 3D CT images and removal of opacified fluid using cascade feed forward neural network. Comput. Math. Methods Med. 2015 (2015)","DOI":"10.1155\/2015\/670739"},{"issue":"5","key":"5_CR10","doi-asserted-by":"publisher","first-page":"836","DOI":"10.14733\/cadaps.2019.836-845","volume":"16","author":"L Guachi","year":"2019","unstructured":"Guachi, L., Guachi, R., Bini, F., Marinozzi, F., et al.: Automatic colorectal segmentation with convolutional neural network. Comput.-Aided Design Appl. 16(5), 836\u2013845 (2019)","journal-title":"Comput.-Aided Design Appl."},{"issue":"4","key":"5_CR11","doi-asserted-by":"publisher","first-page":"774","DOI":"10.2214\/AJR.07.2048","volume":"189","author":"ME Hanson","year":"2007","unstructured":"Hanson, M.E., Pickhardt, P.J., Kim, D.H., Pfau, P.R.: Anatomic factors predictive of incomplete colonoscopy based on findings at CT colonography. Am. J. Roentgenol. 189(4), 774\u2013779 (2007)","journal-title":"Am. J. Roentgenol."},{"key":"5_CR12","unstructured":"Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: MICCAI multi-atlas labeling beyond the cranial vault\u2013workshop and challenge. In: Proceedings of the MICCAI Multi-Atlas Labeling Beyond Cranial Vault-Workshop Challenge, vol.\u00a05, p.\u00a012 (2015)"},{"key":"5_CR13","unstructured":"Li, H., Xiong, P., An, J., Wang, L.: Pyramid attention network for semantic segmentation. arXiv preprint arXiv:1805.10180 (2018)"},{"issue":"4","key":"5_CR14","first-page":"996","volume":"59","author":"L Lu","year":"2011","unstructured":"Lu, L., Zhang, D., Li, L., Zhao, J.: Fully automated colon segmentation for the computation of complete colon centerline in virtual colonoscopy. IEEE Trans. Biomed. Eng. 59(4), 996\u20131004 (2011)","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"5_CR15","doi-asserted-by":"crossref","unstructured":"Malhotra, P., Gupta, S., Koundal, D., Zaguia, A., Enbeyle, W., et\u00a0al.: Deep neural networks for medical image segmentation. J. Healthc. Eng. (2022)","DOI":"10.1155\/2022\/9580991"},{"key":"5_CR16","doi-asserted-by":"crossref","unstructured":"Mohamad, M., Farag, A., Ali, A.M., Elshazly, S., Farag, A.A., Ghanoum, M.: Enhancing virtual colonoscopy with a new visualization measure. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 294\u2013297. IEEE (2018)","DOI":"10.1109\/ISBI.2018.8363577"},{"key":"5_CR17","doi-asserted-by":"crossref","unstructured":"Nappi, J.J., Dachman, A.H., MacEneaney, P., Yoshida, H.: Effect of knowledge-guided colon segmentation in automated detection of polyps in CT colonography. In: Medical Imaging 2002: Physiology and Function from Multidimensional Images. SPIE (2002)","DOI":"10.1117\/12.463586"},{"key":"5_CR18","unstructured":"Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)"},{"key":"5_CR19","doi-asserted-by":"crossref","unstructured":"Ouyang, C., Biffi, C., Chen, C., Kart, T., Qiu, H., Rueckert, D.: Self-supervision with superpixels: training few-shot medical image segmentation without annotation. In: ECCV, Part XXIX 16, pp. 762\u2013780. Springer, Cham (2020)","DOI":"10.1007\/978-3-030-58526-6_45"},{"issue":"1","key":"5_CR20","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1007\/s10044-017-0614-y","volume":"21","author":"K Rajamani","year":"2018","unstructured":"Rajamani, K., et al.: Segmentation of colon and removal of opacified fluid for virtual colonoscopy. Pattern Anal. Appl. 21(1), 205\u2013219 (2018)","journal-title":"Pattern Anal. Appl."},{"issue":"27","key":"5_CR21","doi-asserted-by":"publisher","first-page":"e6","DOI":"10.4108\/eai.12-4-2021.169184","volume":"7","author":"K Ramesh","year":"2021","unstructured":"Ramesh, K., Kumar, G.K., Swapna, K., Datta, D., Rajest, S.S.: A review of medical image segmentation algorithms. EAI Endors. Trans. Pervasive Health Technol. 7(27), e6\u2013e6 (2021)","journal-title":"EAI Endors. Trans. Pervasive Health Technol."},{"key":"5_CR22","doi-asserted-by":"crossref","unstructured":"Ravindran, Z., Das, N.S., et\u00a0al.: Automatic segmentation of colon using multilevel morphology and thesholding. In: 2021 International Conference on Computer Communication and Informatics (ICCCI), pp.\u00a01\u20134. IEEE (2021)","DOI":"10.1109\/ICCCI50826.2021.9402324"},{"key":"5_CR23","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: MICCAI 2015, Part III, pp. 234\u2013241. Springer, Cham (2015)","DOI":"10.1007\/978-3-319-24574-4_28"},{"issue":"2","key":"5_CR24","doi-asserted-by":"publisher","first-page":"540","DOI":"10.1109\/TMI.2018.2867261","volume":"38","author":"AG Roy","year":"2018","unstructured":"Roy, A.G., Navab, N., Wachinger, C.: Recalibrating fully convolutional networks with spatial and channel squeeze and excitation blocks. IEEE Trans. Med. Imaging 38(2), 540\u2013549 (2018)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"5_CR25","doi-asserted-by":"publisher","first-page":"101587","DOI":"10.1016\/j.media.2019.101587","volume":"59","author":"AG Roy","year":"2020","unstructured":"Roy, A.G., Siddiqui, S., P\u00f6lsterl, S., Navab, N., Wachinger, C.: squeeze & excite-guided few-shot segmentation of volumetric images. Med. Image Anal. 59, 101587 (2020)","journal-title":"Med. Image Anal."},{"issue":"5","key":"5_CR26","doi-asserted-by":"publisher","first-page":"1102","DOI":"10.1109\/TGRS.2002.1010897","volume":"40","author":"A Sarkar","year":"2002","unstructured":"Sarkar, A., Biswas, M.K., Kartikeyan, B., Kumar, V., Majumder, K.L., Pal, D.: A MRF model-based segmentation approach to classification for multispectral imagery. IEEE Trans. Geosci. Remote Sens. 40(5), 1102\u20131113 (2002)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"5_CR27","doi-asserted-by":"crossref","unstructured":"Shamir, R.R., Duchin, Y., Kim, J., Sapiro, G., Harel, N.: Continuous dice coefficient: a method for evaluating probabilistic segmentations. arXiv (2019)","DOI":"10.1101\/306977"},{"key":"5_CR28","doi-asserted-by":"crossref","unstructured":"Tang, H., Liu, X., Sun, S., Yan, X., Xie, X.: Recurrent mask refinement for few-shot medical image segmentation. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 3918\u20133928 (2021)","DOI":"10.1109\/ICCV48922.2021.00389"},{"key":"5_CR29","doi-asserted-by":"crossref","unstructured":"Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: few-shot image semantic segmentation with prototype alignment. In: proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 9197\u20139206 (2019)","DOI":"10.1109\/ICCV.2019.00929"},{"key":"5_CR30","doi-asserted-by":"crossref","unstructured":"Wasserthal, J., et al.: TotalSegmentator: robust segmentation of 104 anatomic structures in CT images. Radiol.: AI (2023)","DOI":"10.1148\/ryai.230024"},{"key":"5_CR31","doi-asserted-by":"crossref","unstructured":"Wu, H., Xiao, F., Liang, C.: Dual contrastive learning with anatomical auxiliary supervision for few-shot medical image segmentation. In: ECCV 2022, pp. 417\u2013434. Springer, Cham (2022)","DOI":"10.1007\/978-3-031-20044-1_24"},{"key":"5_CR32","doi-asserted-by":"crossref","unstructured":"Zhang, C., Lin, G., Liu, F., Yao, R., Shen, C.: CANet: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5217\u20135226 (2019)","DOI":"10.1109\/CVPR.2019.00536"},{"key":"5_CR33","doi-asserted-by":"crossref","unstructured":"Zhang, H., et\u00a0al.: ResNest: split-attention networks. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2736\u20132746 (2022)","DOI":"10.1109\/CVPRW56347.2022.00309"},{"key":"5_CR34","doi-asserted-by":"crossref","unstructured":"Zhang, X., Wei, Y., Yang, Y., Huang, T.S.: SG-one: similarity guidance network for one-shot semantic segmentation. IEEE Trans. Cybern. 50 (2020)","DOI":"10.1109\/TCYB.2020.2992433"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-78201-5_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T16:02:30Z","timestamp":1733068950000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-78201-5_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12,2]]},"ISBN":["9783031782008","9783031782015"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-78201-5_5","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024,12,2]]},"assertion":[{"value":"2 December 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICPR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Pattern Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Kolkata","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"India","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 December 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 December 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icpr2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/icpr2024.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}