{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,30]],"date-time":"2024-11-30T05:19:10Z","timestamp":1732943950424,"version":"3.30.0"},"publisher-location":"Cham","reference-count":29,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031781681","type":"print"},{"value":"9783031781698","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,11,30]],"date-time":"2024-11-30T00:00:00Z","timestamp":1732924800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,30]],"date-time":"2024-11-30T00:00:00Z","timestamp":1732924800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,30]],"date-time":"2024-11-30T00:00:00Z","timestamp":1732924800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,30]],"date-time":"2024-11-30T00:00:00Z","timestamp":1732924800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-78169-8_2","type":"book-chapter","created":{"date-parts":[[2024,11,29]],"date-time":"2024-11-29T14:29:09Z","timestamp":1732890549000},"page":"14-29","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["QPDet: Queuing People Detector for\u00a0Aerial Images Based on\u00a0Adaptive Soft Label Assignment Strategy"],"prefix":"10.1007","author":[{"given":"Yi","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Yi","family":"Su","sequence":"additional","affiliation":[]},{"given":"Siying","family":"Li","sequence":"additional","affiliation":[]},{"given":"Kai","family":"Yi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,30]]},"reference":[{"key":"2_CR1","doi-asserted-by":"crossref","unstructured":"Cheng, G., et al.: Towards large-scale small object detection: survey and benchmarks. IEEE Trans. Pattern Anal. Mach. Intell. (2023)","DOI":"10.1109\/TPAMI.2023.3290594"},{"key":"2_CR2","doi-asserted-by":"crossref","unstructured":"Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K.: Augmentation for small object detection. arXiv preprint arXiv:1902.07296 (2019)","DOI":"10.5121\/csit.2019.91713"},{"key":"2_CR3","unstructured":"Zhu, P., Wen, L., Bian, X., Ling, H., Hu, Q.: Vision meets drones: a challenge. arXiv preprint arXiv:1804.07437 (2018)"},{"key":"2_CR4","doi-asserted-by":"crossref","unstructured":"Xu, C., Wang, J., Yang, W., Yu, L.: Dot distance for tiny object detection in aerial images. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 1192\u20131201 (2021)","DOI":"10.1109\/CVPRW53098.2021.00130"},{"key":"2_CR5","doi-asserted-by":"crossref","unstructured":"Yu, X., Gong, Y., Jiang, N., Ye, Q., Han, Z.: Scale match for tiny person detection. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, pp. 1257\u20131265 (2020)","DOI":"10.1109\/WACV45572.2020.9093394"},{"key":"2_CR6","doi-asserted-by":"crossref","unstructured":"Zhang, S., Benenson, R., Schiele, B.: Citypersons: a diverse dataset for pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213\u20133221 (2017)","DOI":"10.1109\/CVPR.2017.474"},{"key":"2_CR7","doi-asserted-by":"crossref","unstructured":"Guo, C., Fan, B., Zhang, Q., Xiang, S., Pan, C.: Augfpn: improving multi-scale feature learning for object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12595\u201312604 (2020)","DOI":"10.1109\/CVPR42600.2020.01261"},{"key":"2_CR8","doi-asserted-by":"crossref","unstructured":"Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object detection. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 6054\u20136063 (2019)","DOI":"10.1109\/ICCV.2019.00615"},{"key":"2_CR9","doi-asserted-by":"crossref","unstructured":"Bai, Y., Zhang, Y., Ding, M., Ghanem, B.: Sod-mtgan: small object detection via multi-task generative adversarial network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 206\u2013221 (2018)","DOI":"10.1007\/978-3-030-01261-8_13"},{"key":"2_CR10","unstructured":"Singh, B., Najibi, M., Davis, L.S.: Sniper: efficient multi-scale training. In: Advances in Neural Information Processing Systems, vol. 31 (2018)"},{"key":"2_CR11","doi-asserted-by":"crossref","unstructured":"Yang, C., Huang, Z., Wang, N.: Querydet: cascaded sparse query for accelerating high-resolution small object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 13668\u201313677 (2022)","DOI":"10.1109\/CVPR52688.2022.01330"},{"key":"2_CR12","doi-asserted-by":"crossref","unstructured":"Bell, S., Zitnick, C.L., Bala, K., Girshick, R.: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2874\u20132883 (2016)","DOI":"10.1109\/CVPR.2016.314"},{"key":"2_CR13","doi-asserted-by":"crossref","unstructured":"Xu, C., Wang, J., Yang, W., Yu, H., Yu, L., Xia, G.-S.: RFLA: Gaussian receptive field based label assignment for tiny object detection. In: European Conference on Computer Vision, pp. 526\u2013543. Springer, Cham (2022)","DOI":"10.1007\/978-3-031-20077-9_31"},{"key":"2_CR14","doi-asserted-by":"crossref","unstructured":"Zhang, S., et al.: Dense distinct query for end-to-end object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7329\u20137338 (2023)","DOI":"10.1109\/CVPR52729.2023.00708"},{"key":"2_CR15","doi-asserted-by":"crossref","unstructured":"Huang, X., Ge, Z., Jie, Z., Yoshie, O.: NMS by representative region: towards crowded pedestrian detection by proposal pairing. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10750\u201310759 (2020)","DOI":"10.1109\/CVPR42600.2020.01076"},{"key":"2_CR16","doi-asserted-by":"crossref","unstructured":"Chi, C., Zhang, S., Xing, J., Lei, Z., Li, S.Z., Zou, X.: Pedhunter: occlusion robust pedestrian detector in crowded scenes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10639\u201310646 (2020)","DOI":"10.1609\/aaai.v34i07.6690"},{"key":"2_CR17","doi-asserted-by":"crossref","unstructured":"Oyelade, O.N., Ezugwu, A.E.-S.: A state-of-the-art survey on deep learning methods for detection of architectural distortion from digital mammography. IEEE Access 8, 148644\u2013148676 (2020)","DOI":"10.1109\/ACCESS.2020.3016223"},{"key":"2_CR18","doi-asserted-by":"crossref","unstructured":"Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794\u20137803 (2018)","DOI":"10.1109\/CVPR.2018.00813"},{"key":"2_CR19","unstructured":"Bochkovskiy, A.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)"},{"key":"2_CR20","unstructured":"Jiang, Y., Tan, Z., Wang, J., Sun, X., Lin, M., Li, H.: Giraffedet: a heavy-neck paradigm for object detection. arXiv preprint arXiv:2202.04256 (2022)"},{"key":"2_CR21","doi-asserted-by":"crossref","unstructured":"Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781\u201310790 (2020)","DOI":"10.1109\/CVPR42600.2020.01079"},{"issue":"23","key":"2_CR22","doi-asserted-by":"publisher","first-page":"5499","DOI":"10.3390\/rs15235499","volume":"15","author":"Z Li","year":"2023","unstructured":"Li, Z., Hou, B., Zitong, W., Ren, B., Yang, C.: FCOSR: a simple anchor-free rotated detector for aerial object detection. Remote Sens. 15(23), 5499 (2023)","journal-title":"Remote Sens."},{"key":"2_CR23","doi-asserted-by":"crossref","unstructured":"Lin, T.-Y., Goyal, P., Girshick, R., He, K., Doll\u00e1r, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980\u20132988 (2017)","DOI":"10.1109\/ICCV.2017.324"},{"key":"2_CR24","doi-asserted-by":"crossref","unstructured":"Ge, Z., Liu, S., Li, Z., Yoshie, O., Sun, J.: OTA: optimal transport assignment for object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 303\u2013312 (2021)","DOI":"10.1109\/CVPR46437.2021.00037"},{"key":"2_CR25","unstructured":"Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)"},{"key":"2_CR26","unstructured":"Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)"},{"key":"2_CR27","unstructured":"Kingma, D.P.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"key":"2_CR28","unstructured":"Xu, S., et\u00a0al. Pp-yoloe: an evolved version of yolo. arXiv preprint arXiv:2203.16250 (2022)"},{"issue":"10","key":"2_CR29","doi-asserted-by":"publisher","first-page":"6700","DOI":"10.1109\/TCSVT.2022.3168279","volume":"32","author":"Y Sun","year":"2022","unstructured":"Sun, Y., Cao, B., Zhu, P., Qinghua, H.: Drone-based RGB-infrared cross-modality vehicle detection via uncertainty-aware learning. IEEE Trans. Circuits Syst. Video Technol. 32(10), 6700\u20136713 (2022)","journal-title":"IEEE Trans. Circuits Syst. Video Technol."}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-78169-8_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,29]],"date-time":"2024-11-29T15:03:36Z","timestamp":1732892616000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-78169-8_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,30]]},"ISBN":["9783031781681","9783031781698"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-78169-8_2","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,11,30]]},"assertion":[{"value":"30 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICPR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Pattern Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Kolkata","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"India","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 December 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 December 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icpr2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/icpr2024.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}