{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T17:00:58Z","timestamp":1743094858479,"version":"3.40.3"},"publisher-location":"Cham","reference-count":36,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031780134"},{"type":"electronic","value":"9783031780141"}],"license":[{"start":{"date-parts":[[2024,11,22]],"date-time":"2024-11-22T00:00:00Z","timestamp":1732233600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,22]],"date-time":"2024-11-22T00:00:00Z","timestamp":1732233600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-78014-1_27","type":"book-chapter","created":{"date-parts":[[2024,11,21]],"date-time":"2024-11-21T12:24:31Z","timestamp":1732191871000},"page":"362-377","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Ancient Egyptian Hieroglyphic Texts Structure Identification"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-2000-6541","authenticated-orcid":false,"given":"Radek","family":"Ma\u0159\u00edk","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6983-3623","authenticated-orcid":false,"given":"Renata","family":"Landgr\u00e1fov\u00e1","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0009-0009-5482-3698","authenticated-orcid":false,"given":"Ji\u0159\u00ed","family":"Li\u0161ka","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,22]]},"reference":[{"key":"27_CR1","doi-asserted-by":"crossref","unstructured":"Allen, T.G.: Egyptian grammar, being an introduction to the study of hieroglyphs (1951)","DOI":"10.1086\/371058"},{"key":"27_CR2","doi-asserted-by":"crossref","unstructured":"Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6077\u20136086 (2018)","DOI":"10.1109\/CVPR.2018.00636"},{"key":"27_CR3","doi-asserted-by":"crossref","unstructured":"Baek, Y., Lee, B., Han, D., Yun, S., Lee, H.: Character region awareness for text detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9365\u20139374 (2019)","DOI":"10.1109\/CVPR.2019.00959"},{"key":"27_CR4","doi-asserted-by":"publisher","first-page":"123438","DOI":"10.1109\/ACCESS.2021.3110082","volume":"9","author":"A Barucci","year":"2021","unstructured":"Barucci, A., Cucci, C., Franci, M., Loschiavo, M., Argenti, F.: A deep learning approach to ancient egyptian hieroglyphs classification. IEEE Access 9, 123438\u2013123447 (2021)","journal-title":"IEEE Access"},{"key":"27_CR5","unstructured":"Brody, S., Alon, U., Yahav, E.: How attentive are graph attention networks? arXiv preprint arXiv:2105.14491 (2021)"},{"key":"27_CR6","unstructured":"Cai, T., Luo, S., Xu, K., He, D., Liu, T.Y., Wang, L.: GraphNorm: a principled approach to accelerating graph neural network training. In: International Conference on Machine Learning, pp. 1204\u20131215. PMLR (2021)"},{"key":"27_CR7","doi-asserted-by":"crossref","unstructured":"Chen, J., Li, B., Xue, X.: Scene text telescope: text-focused scene image super-resolution. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12026\u201312035 (2021)","DOI":"10.1109\/CVPR46437.2021.01185"},{"key":"27_CR8","doi-asserted-by":"crossref","unstructured":"Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 257\u2013266 (2019)","DOI":"10.1145\/3292500.3330925"},{"key":"27_CR9","doi-asserted-by":"crossref","unstructured":"Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica Int. J. Geographic Inf. Geovisual. 10(2), 112\u2013122 (1973)","DOI":"10.3138\/FM57-6770-U75U-7727"},{"issue":"3","key":"27_CR10","doi-asserted-by":"publisher","first-page":"589","DOI":"10.3390\/s17030589","volume":"17","author":"J Duque-Domingo","year":"2017","unstructured":"Duque-Domingo, J., Herrera, P.J., Valero, E., Cerrada, C.: Deciphering egyptian hieroglyphs: towards a new strategy for navigation in museums. Sensors 17(3), 589 (2017)","journal-title":"Sensors"},{"key":"27_CR11","doi-asserted-by":"crossref","unstructured":"Elnabawy, R., Elias, R., Salem, M.: Image based hieroglyphic character recognition. In: International Conference on Signal-Image technology & Internet-Based Systems (SItIS), pp. 32\u201339. IEEE (2018)","DOI":"10.1109\/SITIS.2018.00016"},{"key":"27_CR12","doi-asserted-by":"crossref","unstructured":"Fang, S., Xie, H., Wang, Y., Mao, Z., Zhang, Y.: Read like humans: autonomous, bidirectional and iterative language modeling for scene text recognition. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7098\u20137107 (2021)","DOI":"10.1109\/CVPR46437.2021.00702"},{"key":"27_CR13","doi-asserted-by":"crossref","unstructured":"Franken, M., van Gemert, J.C.: Automatic egyptian hieroglyph recognition by retrieving images as texts. In: Proceedings of the ACM international conference on Multimedia, pp. 765\u2013768 (2013)","DOI":"10.1145\/2502081.2502199"},{"key":"27_CR14","unstructured":"Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263\u20131272. PMLR (2017)"},{"key":"27_CR15","unstructured":"Grandet, P., Mathieu, B.: Cours d\u2019\u00e9gyptien hi\u00e9roglyphique (1970)"},{"issue":"2","key":"27_CR16","doi-asserted-by":"publisher","first-page":"79","DOI":"10.3390\/a16020079","volume":"16","author":"T Guidi","year":"2023","unstructured":"Guidi, T., et al.: Egyptian hieroglyphs segmentation with convolutional neural networks. Algorithms 16(2), 79 (2023)","journal-title":"Algorithms"},{"key":"27_CR17","unstructured":"Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"key":"27_CR18","unstructured":"Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)"},{"key":"27_CR19","unstructured":"Landgr\u00e1fov\u00e1, R., Bare\u0161, L., M\u00ed\u010dkov\u00e1, D.: Abusir XXIX: The Shaft Tomb of Menekhibnekau II: the Texts. Faculty of Arts, Charles University, Czech Institute of Egyptology (2022)"},{"key":"27_CR20","unstructured":"Li, G., M\u00fcller, M., Ghanem, B., Koltun, V.: Training graph neural networks with 1000 layers. In: International Conference on Machine Learning, pp. 6437\u20136449. PMLR (2021)"},{"key":"27_CR21","doi-asserted-by":"crossref","unstructured":"Li, G., Muller, M., Thabet, A., Ghanem, B.: DeepGCNs: can GCNs go as deep as CNNs? In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 9267\u20139276 (2019)","DOI":"10.1109\/ICCV.2019.00936"},{"key":"27_CR22","unstructured":"Lyu, P., et al.: MaskOCR: text recognition with masked encoder-decoder pretraining. arXiv preprint arXiv:2206.00311 (2022)"},{"key":"27_CR23","unstructured":"Ma\u0159\u00edk, R.: Region growing segmentation (in Czech). In: DZO\u201987, Proceedings. Pobocka CSVTS TESLA A. S. Popova, Praha (1987)"},{"key":"27_CR24","unstructured":"Ma\u0159\u00edk, R.: Regions and Image Segmentation (in Czech). Ph.D. thesis, Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University, Prague, Czechoslovakia (1992)"},{"issue":"3","key":"27_CR25","doi-asserted-by":"publisher","first-page":"244","DOI":"10.1016\/S0146-664X(72)80017-0","volume":"1","author":"U Ramer","year":"1972","unstructured":"Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Comput. Graphics Image Process. 1(3), 244\u2013256 (1972)","journal-title":"Comput. Graphics Image Process."},{"key":"27_CR26","unstructured":"Regulski, I., et\u00a0al.: Hieroglyphs: unlocking ancient Egypt. (No Title) (2022)"},{"key":"27_CR27","unstructured":"Rosmorduc, S.: Jsesh documentation (2014). http:\/\/jseshdoc.qenherkhopeshef.org. Accessed 5 Mar 2024"},{"key":"27_CR28","unstructured":"Simpson, R.: Retrograde writing in ancient egyptian inscriptions (2016)"},{"key":"27_CR29","unstructured":"Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision. Springer (2013)"},{"key":"27_CR30","unstructured":"Vaswani, A.: Attention is all you need. In: Advances in Neural Information Processing Systems (2017)"},{"key":"27_CR31","unstructured":"Veli\u010dkovi\u0107, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)"},{"key":"27_CR32","unstructured":"Wallace, L.A.: The Orientation of Hieroglyphs. Part 1, Reversals, vol.\u00a02. Metropolitan Museum of Art (1977)"},{"key":"27_CR33","unstructured":"Wang, J., et al.: Git: a generative image-to-text transformer for vision and language. arXiv preprint arXiv:2205.14100 (2022)"},{"key":"27_CR34","unstructured":"Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)"},{"key":"27_CR35","first-page":"19665","volume":"34","author":"H Zeng","year":"2021","unstructured":"Zeng, H., et al.: Decoupling the depth and scope of graph neural networks. Adv. Neural. Inf. Process. Syst. 34, 19665\u201319679 (2021)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"issue":"3","key":"27_CR36","first-page":"2736","volume":"45","author":"SX Zhang","year":"2022","unstructured":"Zhang, S.X., Zhu, X., Chen, L., Hou, J.B., Yin, X.C.: Arbitrary shape text detection via segmentation with probability maps. IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 2736\u20132750 (2022)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."}],"container-title":["Lecture Notes in Computer Science","Speech and Computer"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-78014-1_27","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,8]],"date-time":"2025-01-08T15:08:43Z","timestamp":1736348923000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-78014-1_27"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,22]]},"ISBN":["9783031780134","9783031780141"],"references-count":36,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-78014-1_27","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024,11,22]]},"assertion":[{"value":"22 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SPECOM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Speech and Computer","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Belgrade","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Serbia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 November 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 November 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"specom2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/specom2024.ftn.uns.ac.rs\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}