{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T05:33:50Z","timestamp":1732080830331,"version":"3.28.0"},"publisher-location":"Cham","reference-count":27,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031777301","type":"print"},{"value":"9783031777318","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,11,14]],"date-time":"2024-11-14T00:00:00Z","timestamp":1731542400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,14]],"date-time":"2024-11-14T00:00:00Z","timestamp":1731542400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,14]],"date-time":"2024-11-14T00:00:00Z","timestamp":1731542400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,14]],"date-time":"2024-11-14T00:00:00Z","timestamp":1731542400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-77731-8_5","type":"book-chapter","created":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T16:43:19Z","timestamp":1732034599000},"page":"51-62","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Association Rules Mining with\u00a0Auto-encoders"],"prefix":"10.1007","author":[{"given":"Th\u00e9ophile","family":"Berteloot","sequence":"first","affiliation":[]},{"given":"Richard","family":"Khoury","sequence":"additional","affiliation":[]},{"given":"Audrey","family":"Durand","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,14]]},"reference":[{"key":"5_CR1","unstructured":"Agrawal, R., Srikant, R., et\u00a0al.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, vol.\u00a01215, pp. 487\u2013499. Citeseer (1994)"},{"key":"5_CR2","doi-asserted-by":"crossref","unstructured":"Alkeshuosh, A.H., Moghadam, M.Z., Al\u00a0Mansoori, I., Abdar, M.: Using PSO algorithm for producing best rules in diagnosis of heart disease. In: 2017 International Conference on Computer and Applications (ICCA), pp. 306\u2013311. IEEE (2017)","DOI":"10.1109\/COMAPP.2017.8079784"},{"key":"5_CR3","doi-asserted-by":"crossref","unstructured":"Borgelt, C.: Keeping things simple: finding frequent item sets by recursive elimination. In: Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, pp. 66\u201370 (2005)","DOI":"10.1145\/1133905.1133914"},{"key":"5_CR4","unstructured":"Christian, B.: An implementation of the FP-growth algorithm. In: Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, pp.\u00a01\u20135 (2005)"},{"issue":"2","key":"5_CR5","doi-asserted-by":"publisher","first-page":"182","DOI":"10.1109\/4235.996017","volume":"6","author":"K Deb","year":"2002","unstructured":"Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182\u2013197 (2002)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"5_CR6","doi-asserted-by":"crossref","unstructured":"Djenouri, Y., Bendjoudi, A., Djenouri, D., Comuzzi, M.: GPU-based bio-inspired model for solving association rules mining problem. In: 2017 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 262\u2013269. IEEE (2017)","DOI":"10.1109\/PDP.2017.16"},{"key":"5_CR7","unstructured":"Dua, D., Graff, C.: UCI machine learning repository (2017). http:\/\/archive.ics.uci.edu\/ml"},{"issue":"1","key":"5_CR8","first-page":"2171","volume":"13","author":"FA Fortin","year":"2012","unstructured":"Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagn\u00e9, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171\u20132175 (2012)","journal-title":"J. Mach. Learn. Res."},{"key":"5_CR9","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1007\/978-3-642-30353-1_6","volume-title":"Advances in Artificial Intelligence","author":"P Fournier-Viger","year":"2012","unstructured":"Fournier-Viger, P., Wu, C.-W., Tseng, V.S.: Mining top-K association rules. In: Kosseim, L., Inkpen, D. (eds.) AI 2012. LNCS (LNAI), vol. 7310, pp. 61\u201373. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-30353-1_6"},{"key":"5_CR10","unstructured":"Fund, I.: Comparing association rules and deep neural networks on medical data. Ph.D. thesis, University of Houston (2019)"},{"key":"5_CR11","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-540-44918-8_1","volume-title":"Quality Measures in Data Mining","author":"L Geng","year":"2007","unstructured":"Geng, L., Hamilton, H.J.: Choosing the right lens: finding what is interesting in data mining. In: Guillet, F.J., Hamilton, H.J. (eds.) Quality Measures in Data Mining. SCI, vol. 43, pp. 3\u201324. Springer, Cham (2007). https:\/\/doi.org\/10.1007\/978-3-540-44918-8_1"},{"issue":"4","key":"5_CR12","doi-asserted-by":"publisher","first-page":"1021","DOI":"10.1007\/s10489-016-0806-y","volume":"45","author":"KE Heraguemi","year":"2016","unstructured":"Heraguemi, K.E., Kamel, N., Drias, H.: Multi-swarm bat algorithm for association rule mining using multiple cooperative strategies. Appl. Intell. 45(4), 1021\u20131033 (2016)","journal-title":"Appl. Intell."},{"key":"5_CR13","series-title":"Lecture Notes in Electrical Engineering","doi-asserted-by":"publisher","first-page":"657","DOI":"10.1007\/978-981-13-0212-1_67","volume-title":"ICCCE 2018","author":"P Kishor","year":"2019","unstructured":"Kishor, P., Sammulal, P.: Association rule mining using an unsupervised neural network with an optimized genetic algorithm. In: Kumar, A., Mozar, S. (eds.) ICCCE 2018. LNEE, vol. 500, pp. 657\u2013669. Springer, Singapore (2019). https:\/\/doi.org\/10.1007\/978-981-13-0212-1_67"},{"issue":"7553","key":"5_CR14","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436\u2013444 (2015)","journal-title":"Nature"},{"issue":"2","key":"5_CR15","doi-asserted-by":"publisher","first-page":"1667","DOI":"10.1007\/s12652-020-02239-w","volume":"12","author":"X Li","year":"2021","unstructured":"Li, X., Li, D., Deng, Y., Xing, J.: Intelligent mining algorithm for complex medical data based on deep learning. J. Ambient. Intell. Humaniz. Comput. 12(2), 1667\u20131678 (2021)","journal-title":"J. Ambient. Intell. Humaniz. Comput."},{"key":"5_CR16","doi-asserted-by":"publisher","first-page":"650","DOI":"10.1016\/j.patcog.2016.06.008","volume":"61","author":"KG Lore","year":"2017","unstructured":"Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650\u2013662 (2017)","journal-title":"Pattern Recogn."},{"key":"5_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.ins.2013.09.009","volume":"258","author":"D Mart\u00edn","year":"2014","unstructured":"Mart\u00edn, D., Rosete, A., Alcal\u00e1-Fdez, J., Herrera, F.: QAR-CIP-NSGA-II: a new multi-objective evolutionary algorithm to mine quantitative association rules. Inf. Sci. 258, 1\u201328 (2014)","journal-title":"Inf. Sci."},{"key":"5_CR18","doi-asserted-by":"publisher","first-page":"39501","DOI":"10.1109\/ACCESS.2018.2855437","volume":"6","author":"E Min","year":"2018","unstructured":"Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., Long, J.: A survey of clustering with deep learning: from the perspective of network architecture. IEEE Access 6, 39501\u201339514 (2018)","journal-title":"IEEE Access"},{"issue":"2","key":"5_CR19","doi-asserted-by":"publisher","first-page":"215824401557994","DOI":"10.1177\/2158244015579941","volume":"5","author":"BB Nair","year":"2015","unstructured":"Nair, B.B., Mohandas, V., Nayanar, N., Teja, E., Vigneshwari, S., Teja, K.: A stock trading recommender system based on temporal association rule mining. SAGE Open 5(2), 2158244015579941 (2015)","journal-title":"SAGE Open"},{"issue":"6","key":"5_CR20","doi-asserted-by":"publisher","first-page":"593","DOI":"10.1080\/07408170600897460","volume":"39","author":"J Pei","year":"2007","unstructured":"Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., Yang, D.: H-Mine: fast and space-preserving frequent pattern mining in large databases. IIE Trans. 39(6), 593\u2013605 (2007)","journal-title":"IIE Trans."},{"key":"5_CR21","doi-asserted-by":"crossref","unstructured":"Ramponi, A., Plank, B.: Neural unsupervised domain adaptation in NLP\u2014a survey. arXiv preprint arXiv:2006.00632 (2020)","DOI":"10.18653\/v1\/2020.coling-main.603"},{"issue":"24","key":"5_CR22","doi-asserted-by":"publisher","first-page":"638","DOI":"10.21105\/joss.00638","volume":"3","author":"S Raschka","year":"2018","unstructured":"Raschka, S.: MLxtend: providing machine learning and data science utilities and extensions to Python\u2019s scientific computing stack. J. Open Source Softw. 3(24), 638 (2018). https:\/\/doi.org\/10.21105\/joss.00638","journal-title":"J. Open Source Softw."},{"key":"5_CR23","doi-asserted-by":"publisher","first-page":"318","DOI":"10.1016\/j.ins.2020.02.073","volume":"524","author":"A Telikani","year":"2020","unstructured":"Telikani, A., Gandomi, A.H., Shahbahrami, A.: A survey of evolutionary computation for association rule mining. Inf. Sci. 524, 318\u2013352 (2020)","journal-title":"Inf. Sci."},{"issue":"1","key":"5_CR24","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1007\/s12652-018-1150-3","volume":"11","author":"A Valdivia","year":"2020","unstructured":"Valdivia, A., et al.: What do people think about this monument? Understanding negative reviews via deep learning, clustering and descriptive rules. J. Ambient. Intell. Humaniz. Comput. 11(1), 39\u201352 (2020)","journal-title":"J. Ambient. Intell. Humaniz. Comput."},{"key":"5_CR25","doi-asserted-by":"crossref","unstructured":"Vougas, K., et\u00a0al.: Deep learning and association rule mining for predicting drug response in cancer. A personalised medicine approach, p. 070490. BioRxiv (2017)","DOI":"10.1101\/070490"},{"key":"5_CR26","doi-asserted-by":"publisher","first-page":"580","DOI":"10.1016\/j.trc.2017.11.027","volume":"86","author":"Z Zhang","year":"2018","unstructured":"Zhang, Z., He, Q., Gao, J., Ni, M.: A deep learning approach for detecting traffic accidents from social media data. Transp. Res. Part C Emerg. Technol. 86, 580\u2013596 (2018)","journal-title":"Transp. Res. Part C Emerg. Technol."},{"key":"5_CR27","unstructured":"Zhuang, F., Cheng, X., Luo, P., Pan, S.J., He, Q.: Supervised representation learning: transfer learning with deep autoencoders. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)"}],"container-title":["Lecture Notes in Computer Science","Intelligent Data Engineering and Automated Learning \u2013 IDEAL 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-77731-8_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T16:44:25Z","timestamp":1732034665000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-77731-8_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,14]]},"ISBN":["9783031777301","9783031777318"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-77731-8_5","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,11,14]]},"assertion":[{"value":"14 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"IDEAL","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Data Engineering and Automated Learning","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Valencia","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 November 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 November 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ideal2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}