{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,18]],"date-time":"2024-10-18T04:32:53Z","timestamp":1729225973006,"version":"3.27.0"},"publisher-location":"Cham","reference-count":29,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031745607","type":"print"},{"value":"9783031745614","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,10,18]],"date-time":"2024-10-18T00:00:00Z","timestamp":1729209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,10,18]],"date-time":"2024-10-18T00:00:00Z","timestamp":1729209600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-74561-4_3","type":"book-chapter","created":{"date-parts":[[2024,10,17]],"date-time":"2024-10-17T18:04:28Z","timestamp":1729188268000},"page":"24-34","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Spectral Graph Sample Weighting for\u00a0Interpretable Sub-cohort Analysis in\u00a0Predictive Models for\u00a0Neuroimaging"],"prefix":"10.1007","author":[{"given":"Magdalini","family":"Paschali","sequence":"first","affiliation":[]},{"given":"Yu Hang","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Spencer","family":"Siegel","sequence":"additional","affiliation":[]},{"given":"Camila","family":"Gonzalez","sequence":"additional","affiliation":[]},{"given":"Kilian M.","family":"Pohl","sequence":"additional","affiliation":[]},{"given":"Akshay","family":"Chaudhari","sequence":"additional","affiliation":[]},{"given":"Qingyu","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,18]]},"reference":[{"key":"3_CR1","doi-asserted-by":"crossref","unstructured":"Adeli, E., Shi, F., An, L., Wee, C.Y., Wu, G., Wang, T.: Joint feature-sample selection and robust diagnosis of Parkinson\u2019s disease from MRI data. NeuroImage 141, 206\u2013219 (2016)","DOI":"10.1016\/j.neuroimage.2016.05.054"},{"issue":"7","key":"3_CR2","doi-asserted-by":"publisher","first-page":"849","DOI":"10.1001\/jamaneurol.2020.0414","volume":"77","author":"ME Belloy","year":"2020","unstructured":"Belloy, M.E., et al.: Association of Klotho-VS heterozygosity with risk of Alzheimer disease in individuals who carry APOE4. JAMA Neurol. 77(7), 849\u2013862 (2020)","journal-title":"JAMA Neurol."},{"issue":"6","key":"3_CR3","doi-asserted-by":"publisher","first-page":"895","DOI":"10.15288\/jsad.2015.76.895","volume":"76","author":"SA Brown","year":"2015","unstructured":"Brown, S.A., et al.: The National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA): a multisite study of adolescent development and substance use. J. Stud. Alcohol Drugs 76(6), 895\u2013908 (2015)","journal-title":"J. Stud. Alcohol Drugs"},{"key":"3_CR4","doi-asserted-by":"crossref","unstructured":"Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)","DOI":"10.3115\/v1\/D14-1179"},{"key":"3_CR5","unstructured":"Chung, F.: Spectral Graph Theory. American Mathematical Society, Providence, R.I. (1997)"},{"key":"3_CR6","unstructured":"Collins, S.: Associations between socioeconomic factors and alcohol outcomes. Alcohol Res. Curr. Rev. 38, 83\u201394 (2016)"},{"key":"3_CR7","doi-asserted-by":"crossref","unstructured":"Dhamala, E., Jamison, K.W., Jaywant, A., Kuceyeski, A.: Shared functional connections within and between cortical networks predict cognitive abilities in adult males and females. Human Brain Mapp. 43, 1087\u20131102 (2022). https:\/\/pubmed.ncbi.nlm.nih.gov\/34811849\/","DOI":"10.1002\/hbm.25709"},{"key":"3_CR8","doi-asserted-by":"crossref","unstructured":"Dhamala, E., Yeo, B., Holmes, A.: One size does not fit all: methodological considerations for brain-based predictive modeling in psychiatry. Biol. Psychiatry 93, 717\u2013728 (2022)","DOI":"10.1016\/j.biopsych.2022.09.024"},{"key":"3_CR9","doi-asserted-by":"crossref","unstructured":"Dir, A., Bell, R., Adams, Z., Hulvershorn, L.: Gender differences in risk factors for adolescent binge drinking and implications for intervention and prevention. Front. Psychiatry 8, 289 (2017)","DOI":"10.3389\/fpsyt.2017.00289"},{"issue":"1","key":"3_CR10","doi-asserted-by":"publisher","first-page":"28","DOI":"10.1038\/nm.4246","volume":"23","author":"AT Drysdale","year":"2017","unstructured":"Drysdale, A.T., et al.: Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23(1), 28\u201338 (2017)","journal-title":"Nat. Med."},{"key":"3_CR11","doi-asserted-by":"crossref","unstructured":"Greene, A., et al.: Brain-phenotype models fail for individuals who defy sample stereotypes. Nature 609, 1\u201310 (2022)","DOI":"10.1038\/s41586-022-05118-w"},{"key":"3_CR12","unstructured":"Hartig, M., et al.: UCSF freesurfer methods. ADNI Alzheimers Disease Neuroimaging Initiative, San Francisco, CA, USA (2014)"},{"key":"3_CR13","doi-asserted-by":"publisher","unstructured":"James, G., Witten, D., Hastie, T., Tibshirani, R., et\u00a0al.: An Introduction to Statistical Learning, vol.\u00a0112. Springer, Cham (2013). https:\/\/doi.org\/10.1007\/978-3-031-38747-0","DOI":"10.1007\/978-3-031-38747-0"},{"key":"3_CR14","doi-asserted-by":"crossref","unstructured":"Jiang, L., Meng, D., Zhao, Q., Shan, S., Hauptmann, A.: Self-paced curriculum learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a029 (2015)","DOI":"10.1609\/aaai.v29i1.9608"},{"key":"3_CR15","unstructured":"Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: MentorNet: learning data-driven curriculum for very deep neural networks on corrupted labels. In: International Conference on Machine Learning, pp. 2304\u20132313. PMLR (2018)"},{"key":"3_CR16","doi-asserted-by":"crossref","unstructured":"Jiang, R., et al.: Gender differences in connectome-based predictions of individualized intelligence quotient and sub-domain scores. Cereb. Cortex 30, 888\u2013900 (2019)","DOI":"10.1093\/cercor\/bhz134"},{"key":"3_CR17","unstructured":"Liu, E.Z., et al.: Just train twice: improving group robustness without training group information. In: International Conference on Machine Learning, pp. 6781\u20136792. PMLR (2021)"},{"key":"3_CR18","doi-asserted-by":"crossref","unstructured":"Mendez, M.F.: Early-onset Alzheimer disease and its variants. Continuum (Minneapolis, Minn.) 25(1), 34 (2019)","DOI":"10.1212\/CON.0000000000000687"},{"key":"3_CR19","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1016\/j.jad.2022.06.002","volume":"312","author":"M Paschali","year":"2022","unstructured":"Paschali, M., et al.: Detecting negative valence symptoms in adolescents based on longitudinal self-reports and behavioral assessments. J. Affect. Disord. 312, 30\u201338 (2022)","journal-title":"J. Affect. Disord."},{"issue":"3","key":"3_CR20","doi-asserted-by":"publisher","first-page":"201","DOI":"10.1212\/WNL.0b013e3181cb3e25","volume":"74","author":"RC Petersen","year":"2010","unstructured":"Petersen, R.C., et al.: Alzheimer\u2019s disease neuroimaging initiative (ADNI): clinical characterization. Neurology 74(3), 201\u2013209 (2010)","journal-title":"Neurology"},{"issue":"4","key":"3_CR21","doi-asserted-by":"publisher","first-page":"370","DOI":"10.1176\/appi.ajp.2017.17040469","volume":"175","author":"A Pfefferbaum","year":"2017","unstructured":"Pfefferbaum, A., et al.: Altered brain developmental trajectories in adolescents after initiating drinking. Am. J. Psychiatry 175(4), 370\u2013380 (2017)","journal-title":"Am. J. Psychiatry"},{"issue":"4","key":"3_CR22","doi-asserted-by":"publisher","first-page":"437","DOI":"10.31887\/DCNS.2016.18.4\/cepperson","volume":"18","author":"JL Podcasy","year":"2016","unstructured":"Podcasy, J.L., Epperson, C.N.: Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin. Neurosci. 18(4), 437\u2013446 (2016)","journal-title":"Dialogues Clin. Neurosci."},{"key":"3_CR23","doi-asserted-by":"publisher","first-page":"194","DOI":"10.1016\/j.neuroimage.2016.01.061","volume":"130","author":"K Pohl","year":"2016","unstructured":"Pohl, K., et al.: Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study. Neuroimage 130, 194\u2013213 (2016)","journal-title":"Neuroimage"},{"key":"3_CR24","unstructured":"Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep learning. In: International Conference on Machine Learning, pp. 4334\u20134343. PMLR (2018)"},{"key":"3_CR25","unstructured":"Roh, Y., Lee, K., Whang, S.E., Suh, C.: Sample selection for fair and robust training. In: Neural Information Processing Systems (NeurIPS) (2021)"},{"key":"3_CR26","doi-asserted-by":"publisher","first-page":"107585","DOI":"10.1016\/j.patcog.2020.107585","volume":"110","author":"C Santiago","year":"2021","unstructured":"Santiago, C., Barata, C., Sasdelli, M., Carneiro, G., Nascimento, J.C.: LOW: training deep neural networks by learning optimal sample weights. Pattern Recogn. 110, 107585 (2021)","journal-title":"Pattern Recogn."},{"key":"3_CR27","doi-asserted-by":"crossref","unstructured":"Saykin, A.J., et al.: Alzheimer\u2019s disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans. Alzheimer\u2019s Dement. 6(3), 265\u2013273 (2010)","DOI":"10.1016\/j.jalz.2010.03.013"},{"key":"3_CR28","unstructured":"Tschorn, M., et al.: Differential predictors for alcohol use in adolescents as a function of familial risk. Transl. Psychiatry 11, 157 (2021)"},{"key":"3_CR29","doi-asserted-by":"publisher","first-page":"101413","DOI":"10.1016\/j.dcn.2024.101413","volume":"68","author":"Q Zhao","year":"2024","unstructured":"Zhao, Q., et al.: Identifying high school risk factors that forecast heavy drinking onset in understudied young adults. Dev. Cogn. Neurosci. 68, 101413 (2024)","journal-title":"Dev. Cogn. Neurosci."}],"container-title":["Lecture Notes in Computer Science","Predictive Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-74561-4_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,17]],"date-time":"2024-10-17T18:06:41Z","timestamp":1729188401000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-74561-4_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,18]]},"ISBN":["9783031745607","9783031745614"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-74561-4_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,10,18]]},"assertion":[{"value":"18 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRIME","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on PRedictive Intelligence In MEdicine","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Marrakesh","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Morocco","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"prime2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/basira-lab.com\/prime-miccai-2024\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}