{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,29]],"date-time":"2024-11-29T11:40:11Z","timestamp":1732880411060,"version":"3.30.0"},"publisher-location":"Cham","reference-count":23,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031739668"},{"type":"electronic","value":"9783031739675"}],"license":[{"start":{"date-parts":[[2024,10,11]],"date-time":"2024-10-11T00:00:00Z","timestamp":1728604800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,10,11]],"date-time":"2024-10-11T00:00:00Z","timestamp":1728604800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-73967-5_11","type":"book-chapter","created":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T08:02:03Z","timestamp":1728547323000},"page":"111-121","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Outlier Detection in\u00a0Large Radiological Datasets Using UMAP"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0541-9110","authenticated-orcid":false,"given":"Mohammad Tariqul","family":"Islam","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2453-2581","authenticated-orcid":false,"given":"Jason W.","family":"Fleischer","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,11]]},"reference":[{"key":"11_CR1","unstructured":"Amid, E., Warmuth, M.K.: TriMap: large-scale dimensionality reduction using triplets. arXiv preprint arXiv:1910.00204 (2019)"},{"issue":"1","key":"11_CR2","first-page":"4118","volume":"23","author":"JN B\u00f6hm","year":"2022","unstructured":"B\u00f6hm, J.N., Berens, P., Kobak, D.: Attraction-repulsion spectrum in neighbor embeddings. J. Mach. Learn. Res. 23(1), 4118\u20134149 (2022)","journal-title":"J. Mach. Learn. Res."},{"issue":"6","key":"11_CR3","doi-asserted-by":"publisher","first-page":"1668","DOI":"10.1148\/rg.2015150023","volume":"35","author":"MA Bruno","year":"2015","unstructured":"Bruno, M.A., Walker, E.A., Abujudeh, H.H.: Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction. Radiographics 35(6), 1668\u20131676 (2015)","journal-title":"Radiographics"},{"key":"11_CR4","doi-asserted-by":"crossref","unstructured":"Fleischer, J., Islam, M.T.: Late breaking abstract-identifying and phenotyping COVID-19 patients using machine learning on chest x-rays. Eur. Respir. J. (2020)","DOI":"10.1183\/13993003.congress-2020.4151"},{"issue":"7","key":"11_CR5","doi-asserted-by":"publisher","first-page":"1359","DOI":"10.1016\/j.media.2012.05.002","volume":"16","author":"V Fritsch","year":"2012","unstructured":"Fritsch, V., Varoquaux, G., Thyreau, B., Poline, J.B., Thirion, B.: Detecting outliers in high-dimensional neuroimaging datasets with robust covariance estimators. Med. Image Anal. 16(7), 1359\u20131370 (2012)","journal-title":"Med. Image Anal."},{"key":"11_CR6","doi-asserted-by":"crossref","unstructured":"Gang, P., et al.: Dimensionality reduction in deep learning for chest X-ray analysis of lung cancer. In: 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), pp. 878\u2013883. IEEE (2018)","DOI":"10.1109\/ICACI.2018.8377579"},{"key":"11_CR7","doi-asserted-by":"crossref","unstructured":"Han, S., Hu, X., Huang, H., Jiang, M., Zhao, Y.: ADBench: anomaly detection benchmark. In: Advances in Neural Information Processing Systems, vol. 35, pp. 32142\u201332159 (2022)","DOI":"10.2139\/ssrn.4266498"},{"key":"11_CR8","unstructured":"Hinton, G., Roweis, S.T.: Stochastic neighbor embedding. In: Advances in Neural Information Processing Systems, vol.\u00a015, pp. 833\u2013840 (2002)"},{"issue":"2","key":"11_CR9","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1023\/B:AIRE.0000045502.10941.a9","volume":"22","author":"V Hodge","year":"2004","unstructured":"Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85\u2013126 (2004)","journal-title":"Artif. Intell. Rev."},{"key":"11_CR10","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Van Der\u00a0Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700\u20134708 (2017)","DOI":"10.1109\/CVPR.2017.243"},{"key":"11_CR11","doi-asserted-by":"crossref","unstructured":"Irvin, J., et\u00a0al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a033, pp. 590\u2013597 (2019)","DOI":"10.1609\/aaai.v33i01.3301590"},{"key":"11_CR12","unstructured":"Islam, M.T., Fleischer, J.W.: Manifold-aligned neighbor embedding. In: ICLR 2022 Workshop on Geometrical and Topological Representation Learning (2022)"},{"key":"11_CR13","doi-asserted-by":"crossref","unstructured":"Islam, M.T., Fleischer, J.W.: Codes for outlier detection in large radiological datasets using UMAP (2024). https:\/\/github.com\/tariqul-islam\/Outlier_Detection_UMAP","DOI":"10.1007\/978-3-031-73967-5_11"},{"issue":"2","key":"11_CR14","doi-asserted-by":"publisher","first-page":"313","DOI":"10.1137\/18M1216134","volume":"1","author":"GC Linderman","year":"2019","unstructured":"Linderman, G.C., Steinerberger, S.: Clustering with t-SNE, provably. SIAM J. Math. Data Sci. 1(2), 313\u2013332 (2019)","journal-title":"SIAM J. Math. Data Sci."},{"key":"11_CR15","unstructured":"Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579\u20132605 (2008)"},{"key":"11_CR16","doi-asserted-by":"crossref","unstructured":"McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)","DOI":"10.21105\/joss.00861"},{"key":"11_CR17","unstructured":"Northcutt, C.G., Athalye, A., Mueller, J.: Pervasive label errors in test sets destabilize machine learning benchmarks. arXiv preprint arXiv:2103.14749 (2021)"},{"key":"11_CR18","unstructured":"Rajpurkar, P., et\u00a0al.: MURA dataset: towards radiologist-level abnormality detection in musculoskeletal radiographs. In: Medical Imaging with Deep Learning (2018)"},{"issue":"3","key":"11_CR19","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211\u2013252 (2015)","journal-title":"Int. J. Comput. Vision"},{"issue":"4","key":"11_CR20","doi-asserted-by":"publisher","first-page":"739","DOI":"10.2214\/AJR.16.16963","volume":"208","author":"S Waite","year":"2017","unstructured":"Waite, S., Scott, J., Gale, B., Fuchs, T., Kolla, S., Reede, D.: Interpretive error in radiology. Am. J. Roentgenol. 208(4), 739\u2013749 (2017)","journal-title":"Am. J. Roentgenol."},{"key":"11_CR21","doi-asserted-by":"crossref","unstructured":"Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097\u20132106 (2017)","DOI":"10.1109\/CVPR.2017.369"},{"issue":"1","key":"11_CR22","first-page":"9129","volume":"22","author":"Y Wang","year":"2021","unstructured":"Wang, Y., Huang, H., Rudin, C., Shaposhnik, Y.: Understanding how dimension reduction tools work: an empirical approach to deciphering t-SNE, UMAP, TriMAP, and PaCMAP for data visualization. J. Mach. Learn. Res. 22(1), 9129\u20139201 (2021)","journal-title":"J. Mach. Learn. Res."},{"issue":"10","key":"11_CR23","doi-asserted-by":"publisher","first-page":"719","DOI":"10.1038\/s41551-018-0305-z","volume":"2","author":"KH Yu","year":"2018","unstructured":"Yu, K.H., Beam, A.L., Kohane, I.S.: Artificial intelligence in healthcare. Nat. Biomed. Eng. 2(10), 719\u2013731 (2018)","journal-title":"Nat. Biomed. Eng."}],"container-title":["Lecture Notes in Computer Science","Topology- and Graph-Informed Imaging Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-73967-5_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,29]],"date-time":"2024-11-29T11:05:59Z","timestamp":1732878359000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-73967-5_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,11]]},"ISBN":["9783031739668","9783031739675"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-73967-5_11","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024,10,11]]},"assertion":[{"value":"11 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors\u00a0have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"TGI3","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Topology- and Graph-Informed Imaging Informatics","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Marrakesh","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Morocco","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"tgi32024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/topology-miccai.github.io\/First_TGI_2024.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}