{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,16]],"date-time":"2024-10-16T04:27:04Z","timestamp":1729052824842},"publisher-location":"Cham","reference-count":22,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031739026","type":"print"},{"value":"9783031739033","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,10,16]],"date-time":"2024-10-16T00:00:00Z","timestamp":1729036800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,10,16]],"date-time":"2024-10-16T00:00:00Z","timestamp":1729036800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-73903-3_13","type":"book-chapter","created":{"date-parts":[[2024,10,15]],"date-time":"2024-10-15T21:01:53Z","timestamp":1729026113000},"page":"191-206","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Noise-Tolerant Active Preference Learning for\u00a0Multicriteria Choice Problems"],"prefix":"10.1007","author":[{"given":"Margot","family":"Herin","sequence":"first","affiliation":[]},{"given":"Patrice","family":"Perny","sequence":"additional","affiliation":[]},{"given":"Nataliya","family":"Sokolovska","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,16]]},"reference":[{"key":"13_CR1","doi-asserted-by":"publisher","first-page":"102089","DOI":"10.1016\/j.inffus.2023.102089","volume":"103","author":"L Adam","year":"2024","unstructured":"Adam, L., Destercke, S.: Handling inconsistency in (numerical) preferences using possibility theory. Inf. Fusion 103, 102089 (2024)","journal-title":"Inf. Fusion"},{"key":"13_CR2","doi-asserted-by":"crossref","unstructured":"Balcan, M.F., Beygelzimer, A., Langford, J.: Agnostic active learning. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 65\u201372 (2006)","DOI":"10.1145\/1143844.1143853"},{"key":"13_CR3","doi-asserted-by":"publisher","first-page":"152","DOI":"10.1016\/j.artint.2017.02.001","volume":"246","author":"N Benabbou","year":"2017","unstructured":"Benabbou, N., Perny, P., Viappiani, P.: Incremental elicitation of Choquet capacities for multicriteria choice, ranking and sorting problems. Artif. Intell. 246, 152\u2013180 (2017)","journal-title":"Artif. Intell."},{"key":"13_CR4","doi-asserted-by":"crossref","unstructured":"Bourdache, N., Perny, P., Spanjaard, O.: Incremental elicitation of rank-dependent aggregation functions based on Bayesian linear regression. In: Proceedings of IJCAI-19, pp. 2023\u20132029 (2019)","DOI":"10.24963\/ijcai.2019\/280"},{"issue":"8\u20139","key":"13_CR5","doi-asserted-by":"publisher","first-page":"686","DOI":"10.1016\/j.artint.2006.02.003","volume":"170","author":"C Boutilier","year":"2006","unstructured":"Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Constraint-based optimization and utility elicitation using the minimax decision criterion. Artif. Intell. 170(8\u20139), 686\u2013713 (2006)","journal-title":"Artif. Intell."},{"key":"13_CR6","unstructured":"Chajewska, U., Koller, D., Parr, R.: Making rational decisions using adaptive utility elicitation. In: AAAI\/IAAI, pp. 363\u2013369 (2000)"},{"issue":"3","key":"13_CR7","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1016\/0165-4896(89)90056-5","volume":"17","author":"A Chateauneuf","year":"1989","unstructured":"Chateauneuf, A., Jaffray, J.Y.: Some characterizations of lower probabilities and other monotone capacities through the use of M\u00f6bius inversion. Math. Soc. Sci. 17(3), 263\u2013283 (1989)","journal-title":"Math. Soc. Sci."},{"key":"13_CR8","doi-asserted-by":"publisher","first-page":"201","DOI":"10.1007\/BF00993277","volume":"15","author":"D Cohn","year":"1994","unstructured":"Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Mach. Learn. 15, 201\u2013221 (1994)","journal-title":"Mach. Learn."},{"issue":"19","key":"13_CR9","doi-asserted-by":"publisher","first-page":"1767","DOI":"10.1016\/j.tcs.2010.12.054","volume":"412","author":"S Dasgupta","year":"2011","unstructured":"Dasgupta, S.: Two faces of active learning. Theoret. Comput. Sci. 412(19), 1767\u20131781 (2011)","journal-title":"Theoret. Comput. Sci."},{"key":"13_CR10","unstructured":"Dasgupta, S., Hsu, D.J., Monteleoni, C.: A general agnostic active learning algorithm. Adv. Neural Inf. Process. Syst. 20 (2007)"},{"key":"13_CR11","unstructured":"Domshlak, C., Joachims, T.: Unstructuring user preferences: efficient non-parametric utility revelation. arXiv preprint arXiv:1207.1390 (2012)"},{"issue":"6","key":"13_CR12","doi-asserted-by":"publisher","first-page":"1558","DOI":"10.1137\/120865094","volume":"41","author":"V Feldman","year":"2012","unstructured":"Feldman, V., Guruswami, V., Raghavendra, P., Wu, Y.: Agnostic learning of monomials by halfspaces is hard. SIAM J. Comput. 41(6), 1558\u20131590 (2012)","journal-title":"SIAM J. Comput."},{"key":"13_CR13","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9781139644150","volume-title":"Aggregation Functions","author":"M Grabisch","year":"2009","unstructured":"Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions, vol. 127. Cambridge University Press, Cambridge (2009)"},{"key":"13_CR14","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-30690-2","volume-title":"Set Functions, Games and Capacities in Decision Making","author":"M Grabisch","year":"2016","unstructured":"Grabisch, M., et al.: Set Functions, Games and Capacities in Decision Making, vol. 46. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-30690-2"},{"key":"13_CR15","doi-asserted-by":"crossref","unstructured":"Hanneke, S., et\u00a0al.: Theory of disagreement-based active learning. Found. Trends\u00ae Mach. Learn. 7(2-3), 131\u2013309 (2014)","DOI":"10.1561\/2200000037"},{"key":"13_CR16","doi-asserted-by":"crossref","unstructured":"Herin, M., Perny, P., Sokolovska, N.: Learning preference models with sparse interactions of criteria. In: Proceedings of the of IJCAI (2023)","DOI":"10.24963\/ijcai.2023\/421"},{"key":"13_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"308","DOI":"10.1007\/978-3-031-45608-4_23","volume-title":"Symbolic and Quantitative Approaches to Reasoning with Uncertainty","author":"S Pourkhajouei","year":"2023","unstructured":"Pourkhajouei, S., Toffano, F., Viappiani, P., Wilson, N.: An efficient non-Bayesian approach for interactive preference elicitation under noisy preference models. In: Bouraoui, Z., Vesic, S. (eds.) ECSQARU 2023. LNCS, vol. 14294, pp. 308\u2013321. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-45608-4_23"},{"key":"13_CR18","unstructured":"Steuer, R.E.: Multiple Criteria Optimization. Theory, Computation, and Application (1986)"},{"key":"13_CR19","doi-asserted-by":"crossref","unstructured":"Vanderpooten, D., Vincke, P.: Description and analysis of some representative interactive multicriteria procedures. In: Models and Methods in Multiple Criteria Decision Making, pp. 1221\u20131238. Elsevier (1989)","DOI":"10.1016\/B978-0-08-037938-8.50007-0"},{"key":"13_CR20","unstructured":"Wang, T., Boutilier, C.: Incremental utility elicitation with the minimax regret decision criterion. In: IJCAI, vol.\u00a03, pp. 309\u2013316 (2003)"},{"key":"13_CR21","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1109\/TSMC.1984.6313205","volume":"2","author":"CC White","year":"1984","unstructured":"White, C.C., Sage, A.P., Dozono, S.: A model of multiattribute decisionmaking and trade-off weight determination under uncertainty. IEEE Trans. Syst. Man Cybern. 2, 223\u2013229 (1984)","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"13_CR22","doi-asserted-by":"crossref","unstructured":"Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vector optimization problems. Oper.-Res.-Spektr. 8(2), 73\u201387 (1986)","DOI":"10.1007\/BF01719738"}],"container-title":["Lecture Notes in Computer Science","Algorithmic Decision Theory"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-73903-3_13","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,15]],"date-time":"2024-10-15T21:04:08Z","timestamp":1729026248000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-73903-3_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,16]]},"ISBN":["9783031739026","9783031739033"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-73903-3_13","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,10,16]]},"assertion":[{"value":"16 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADT","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Algorithmic Decision Theory","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"New Brunswick, NJ","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aldt2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/preflib.github.io\/adt2024\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}