{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,16]],"date-time":"2024-10-16T04:26:52Z","timestamp":1729052812164},"publisher-location":"Cham","reference-count":31,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031739026","type":"print"},{"value":"9783031739033","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,10,16]],"date-time":"2024-10-16T00:00:00Z","timestamp":1729036800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,10,16]],"date-time":"2024-10-16T00:00:00Z","timestamp":1729036800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-73903-3_11","type":"book-chapter","created":{"date-parts":[[2024,10,15]],"date-time":"2024-10-15T21:01:53Z","timestamp":1729026113000},"page":"160-173","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Collaborative Information Dissemination with\u00a0Graph-Based Multi-Agent Reinforcement Learning"],"prefix":"10.1007","author":[{"given":"Raffaele","family":"Galliera","sequence":"first","affiliation":[]},{"given":"Kristen Brent","family":"Venable","sequence":"additional","affiliation":[]},{"given":"Matteo","family":"Bassani","sequence":"additional","affiliation":[]},{"given":"Niranjan","family":"Suri","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,16]]},"reference":[{"key":"11_CR1","doi-asserted-by":"publisher","unstructured":"Tonguz, O., Wisitpongphan, N., Bai, F., Mudalige, P., Sadekar, V.: Broadcasting in VANET. In: 2007 Mobile Networking for Vehicular Environments, pp. 7\u201312 (2007). https:\/\/doi.org\/10.1109\/MOVE.2007.4300825","DOI":"10.1109\/MOVE.2007.4300825"},{"key":"11_CR2","doi-asserted-by":"publisher","unstructured":"Ibrahim, B.F., Toycan, M., Mawlood, H.A.: A comprehensive survey on VANET broadcast protocols. In: 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM), pp. 298\u2013302 (2020). https:\/\/doi.org\/10.1109\/ICCAKM46823.2020.9051462","DOI":"10.1109\/ICCAKM46823.2020.9051462"},{"key":"11_CR3","doi-asserted-by":"publisher","unstructured":"Suri, N., et al.: Comparing performance of group communications protocols over SCB versus routed manet networks. In: 2022 IEEE Military Communications Conference (MILCOM), MILCOM 2022, pp. 1011\u20131017 (2022). https:\/\/doi.org\/10.1109\/MILCOM55135.2022.10017772","DOI":"10.1109\/MILCOM55135.2022.10017772"},{"key":"11_CR4","unstructured":"Foerster, J.N., Assael, Y.M., de\u00a0Freitas, N., Whiteson, S.: Learning to communicate with deep multi-agent reinforcement learning. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS 2016, Red Hook, NY, USA, pp. 2145\u20132153. Curran Associates Inc. (2016). ISBN 9781510838819"},{"key":"11_CR5","doi-asserted-by":"publisher","first-page":"183","DOI":"10.1007\/978-3-642-14435-6_7","volume-title":"Innovations in Multi-Agent Systems and Applications - 1","author":"L Bu\u015foniu","year":"2010","unstructured":"Bu\u015foniu, L., Babu\u0161ka, R., De Schutter, B.: Multi-agent reinforcement learning: an overview. In: Srinivasan, D., Jain, L.C. (eds.) Innovations in Multi-Agent Systems and Applications - 1, vol. 310, pp. 183\u2013221. Springer, Heidelberg (2010). https:\/\/doi.org\/10.1007\/978-3-642-14435-6_7"},{"key":"11_CR6","unstructured":"Sukhbaatar, S., Szlam, A., Fergus, R.: Learning multiagent communication with backpropagation. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS 2016, Red Hook, NY, USA, pp. 2252\u20132260. Curran Associates Inc. (2016). ISBN 9781510838819"},{"key":"11_CR7","unstructured":"Peng, P., et al.: Multiagent bidirectionally-coordinated nets: emergence of human-level coordination in learning to play starcraft combat games (2017)"},{"key":"11_CR8","unstructured":"Jiang, J., Lu, Z.: Learning attentional communication for multi-agent cooperation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS 2018, Red Hook, NY, USA, pp. 7265\u20137275. Curran Associates Inc. (2018)"},{"key":"11_CR9","unstructured":"Das, A., et al.: TarMAC: targeted multi-agent communication. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol.\u00a097, pp. 1538\u20131546. PMLR (2019). https:\/\/proceedings.mlr.press\/v97\/das19a.html"},{"key":"11_CR10","unstructured":"Jiang, J., Dun, C., Huang, T., Lu, Z.: Graph convolutional reinforcement learning. In: International Conference on Learning Representations (2020). https:\/\/openreview.net\/forum?id=HkxdQkSYDB"},{"key":"11_CR11","unstructured":"Brody, S., Alon, U., Yahav, E.: How attentive are graph attention networks? In: International Conference on Learning Representations (Poster) (2022). https:\/\/openreview.net\/forum?id=F72ximsx7C1"},{"key":"11_CR12","unstructured":"Wang, Z., Schaul, T., Hessel, M., Van\u00a0Hasselt, H., Lanctot, M., De\u00a0Freitas, N.: Dueling network architectures for deep reinforcement learning. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning, ICML 2016, vol. 48, pp. 1995\u20132003. JMLR.org (2016)"},{"key":"11_CR13","doi-asserted-by":"crossref","unstructured":"Dearlove, C., Clausen, T.H.: Optimized Link State Routing Protocol Version 2 (OLSRv2) and MANET Neighborhood Discovery Protocol (NHDP) Extension TLVs. RFC 7188 (2014). https:\/\/www.rfc-editor.org\/info\/rfc7188","DOI":"10.17487\/rfc7188"},{"issue":"2","key":"11_CR14","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1145\/2503792.2503797","volume":"42","author":"A Guille","year":"2013","unstructured":"Guille, A., Hacid, H., Favre, C., Zighed, D.A.: Information diffusion in online social networks: a survey. SIGMOD Rec. 42(2), 17\u201328 (2013). https:\/\/doi.org\/10.1145\/2503792.2503797. ISSN 0163-5808","journal-title":"SIGMOD Rec."},{"key":"11_CR15","doi-asserted-by":"publisher","unstructured":"Ye, Z., Zhou, Q.: Performance evaluation indicators of space dynamic networks under broadcast mechanism. Space: Sci. Technol. 2021 (2021). https:\/\/doi.org\/10.34133\/2021\/9826517","DOI":"10.34133\/2021\/9826517"},{"issue":"1","key":"11_CR16","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1109\/TVT.2011.2177675","volume":"61","author":"X Ma","year":"2012","unstructured":"Ma, X., Zhang, J., Yin, X., Trivedi, K.S.: Design and analysis of a robust broadcast scheme for VANET safety-related services. IEEE Trans. Veh. Technol. 61(1), 46\u201361 (2012). https:\/\/doi.org\/10.1109\/TVT.2011.2177675","journal-title":"IEEE Trans. Veh. Technol."},{"key":"11_CR17","unstructured":"Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. A Bradford Book, Cambridge (2018). ISBN 0262039249"},{"key":"11_CR18","doi-asserted-by":"crossref","unstructured":"Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st edn. Wiley (1994). ISBN 0471619779","DOI":"10.1002\/9780470316887"},{"key":"11_CR19","unstructured":"Hausknecht, M.J., Stone, P.: Deep recurrent q-learning for partially observable MDPs. In: 2015 AAAI Fall Symposia, Arlington, Virginia, USA, 12\u201314 November 2015, pp. 29\u201337. AAAI Press (2015)"},{"key":"11_CR20","unstructured":"Albrecht, S.V., Christianos, F., Sch\u00e4fer, L.: Multi-Agent Reinforcement Learning: Foundations and Modern Approaches. MIT Press (2023). https:\/\/www.marl-book.com"},{"issue":"4","key":"11_CR21","doi-asserted-by":"publisher","first-page":"357","DOI":"10.3233\/AIC-220116","volume":"35","author":"IH Ahmed","year":"2022","unstructured":"Ahmed, I.H., et al.: Deep reinforcement learning for multi-agent interaction. AI Commun. 35(4), 357\u2013368 (2022)","journal-title":"AI Commun."},{"key":"11_CR22","doi-asserted-by":"publisher","unstructured":"Qayyum, A., Viennot, L., Laouiti, A.: Multipoint relaying for flooding broadcast messages in mobile wireless networks. In: Proceedings of the 35th Annual Hawaii International Conference on System Sciences, pp. 3866\u20133875 (2002). https:\/\/doi.org\/10.1109\/HICSS.2002.994521","DOI":"10.1109\/HICSS.2002.994521"},{"key":"11_CR23","unstructured":"Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979). ISBN 0-7167-1044-7"},{"key":"11_CR24","doi-asserted-by":"crossref","unstructured":"Macker, J.: RFC 6621: simplified multicast forwarding (2012)","DOI":"10.17487\/rfc6621"},{"key":"11_CR25","doi-asserted-by":"crossref","unstructured":"Yahja, A., Kaviani, S., Ryu, B., Kim, J.H., Larson, K.A.: DeepADMR: a deep learning based anomaly detection for MANET routing. In: IEEE Military Communications Conference, MILCOM 2022, Rockville, MD, USA, 28 November\u20132 December 2022, pp. 412\u2013417. IEEE (2022)","DOI":"10.1109\/MILCOM55135.2022.10017842"},{"key":"11_CR26","doi-asserted-by":"crossref","unstructured":"Kaviani, S., et al.: DeepCQ+: robust and scalable routing with multi-agent deep reinforcement learning for highly dynamic networks. In: 2021 IEEE Military Communications Conference, MILCOM 2021, San Diego, CA, USA, 29 November\u20132 December 2021, pp. 31\u201336. IEEE (2021)","DOI":"10.1109\/MILCOM52596.2021.9652948"},{"key":"11_CR27","doi-asserted-by":"crossref","unstructured":"Kaviani, S., et al.: DeepMPR: enhancing opportunistic routing in wireless networks through multi-agent deep reinforcement learning (2023)","DOI":"10.1109\/MILCOM58377.2023.10356325"},{"key":"11_CR28","unstructured":"Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms (2017)"},{"key":"11_CR29","unstructured":"Veli\u010dkovi\u0107, P., Cucurull, G., Casanova, A., Romero, A., Li\u00f2, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018). https:\/\/openreview.net\/forum?id=rJXMpikCZ"},{"key":"11_CR30","doi-asserted-by":"publisher","unstructured":"Suri, N., et al.: Adaptive information dissemination over tactical edge networks. In: 2023 International Conference on Military Communications and Information Systems (ICMCIS), pp. 1\u20137 (2023). https:\/\/doi.org\/10.1109\/ICMCIS59922.2023.10253585","DOI":"10.1109\/ICMCIS59922.2023.10253585"},{"key":"11_CR31","doi-asserted-by":"publisher","unstructured":"Galliera, R., et al.: Learning to sail dynamic networks: the marlin reinforcement learning framework for congestion control in tactical environments. In: 2023 IEEE Military Communications Conference (MILCOM), MILCOM 2023, pp. 424\u2013429 (2023). https:\/\/doi.org\/10.1109\/MILCOM58377.2023.10356270","DOI":"10.1109\/MILCOM58377.2023.10356270"}],"container-title":["Lecture Notes in Computer Science","Algorithmic Decision Theory"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-73903-3_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,15]],"date-time":"2024-10-15T21:03:33Z","timestamp":1729026213000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-73903-3_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,16]]},"ISBN":["9783031739026","9783031739033"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-73903-3_11","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,10,16]]},"assertion":[{"value":"16 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADT","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Algorithmic Decision Theory","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"New Brunswick, NJ","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aldt2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/preflib.github.io\/adt2024\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}